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part ∅∅∅: introduction

This thesis concerns theories extending the ‘Zermelo-Fraenkel with Choice’, or ZFC,
axioms. It will: introduce two such families of theories, which arise in the study of
the small end of the large-cardinal hierarchy; place these families relative to each
other and other such theories; and then consider more broadly the notion of ‘placing’
we have used. In particular, it will consider whether, given any two theories, it is
the case that one will always place above the other (or at the same level).

In Part I, the two families of theories will be defined using the notions of worldly
and otherworldly cardinals, which are large-cardinal concepts arising towards the
bottom of any hierarchy commonly used to rank such concepts. These large-cardinal
concepts can be extended in a straightforward way to obtain, first, the α-worldly
and α-otherworldly cardinals (for α an ordinal), then the hyperworldly and hyper-
otherworldly cardinals, then the α-hyperworldly and α-hyper-otherworldly cardinals,
and so on.

In order to develop these concepts, we will require some set-theoretic and model-
theoretic preliminaries. In addition we will briefly survey Gödel’s incompleteness
theorems and extend the ideas behind them to set theory. This will be the subject
of Section 1. In Section 2, we will then give a development of the worldly and
otherworldly cardinals and their hyper-extensions. We will prove some basic results,
and relate them to each other and the inaccessible cardinals, the ‘next largest’
large-cardinal concept. Section 3 will then formally introduce the hierarchy of
consistency strength, commonly used in ordering extensions of ZFC, and place our
novel large-cardinal concepts within it. Other hierarchies used to order (some)
theories extending ZFC will also be considered.

Part II examines the consistency strength hierarchy from a more philosophical
perspective. It will primarily be concerned with the claim commonly made by set
theorists that the hierarchy is linear in its natural theories. Specifically, that given
two natural extensions of ZFC, we expect that one has consistency strength greater
than or equal to the other. A central source in this part of the thesis will be Joel
David Hamkins’ paper ‘Nonlinearity in the hierarchy of large-cardinal consistency
strength’, from which I will draw, expand on, and assess a number of ideas.

Section 4 explains why set theorists only consider ‘natural’ theories when arguing
for consistency strength linearity. Using Gödelian ideas from Section 1, we can
construct examples of incomparability in the hierarchy. With this restriction of
natural theories noted, Section 5 investigates what we might hope to gain from such
a linearity phenomenon, both philosophically and mathematically.

The thesis then shifts to critically consider this question of linearity. Section 6
gives the inductive argument for linearity, and notes that the cardinals we have
presented here add to this case. Section 7 then considers two counter-arguments
presented by Hamkins in his paper. I will expand these arguments from their original
presentation, and examine how they impact linearity as well as our concerns from
Section 5. In particular, I will conclude that on the basis of the arguments given,
we do not currently have strong reason to believe that the hierarchy of consistency
strength is linear in its natural theories.



part i: the hyperworldly and hyper-otherworldly
cardinals

1. Mathematical preliminaries

We begin with a number of preliminaries from set theory and logic. Familiarity
with some set theory, such as the basic operations on sets, ordinal arithmetic, and
basic cardinal arithmetic will be assumed. All the mathematical objects referred to
will be sets unless otherwise specified (we know for example that On is not a set by
Burali-Forti); we do not assume urelements (though doing so would change little).
Throughout this essay proofs will be ended with ⊣, and definitions with ◁.

1.1. Basic set theory. The setting for this paper will be the von Neumann
hierarchy, originally due to Zermelo in [Zer30]. This is defined as follows:

Definition 1.1. For α, λ ∈ On, λ a limit ordinal (see Definition 1.9).

V0 := ∅
Vα+1 := P (Vα)

Vλ :=
⋃
β<λ

Vβ .

We then informally (since as above On is not a set) identify

V :=
⋃

α∈On

Vα.

◁

V is a proper class: for it to be a set it would have to be in some Vα, however then
quickly V ∈ V , a contradiction. We also define the notion of rank:

Definition 1.2. Given a set x, the rank of x, written rankx, is the minimal α ∈ On
such that x ⊆ Vα. ◁

The following lemma will be useful in the proof of Theorem 1.10.

Lemma 1.3. Vα is a transitive set for all α ∈ On.

Proof. Recall that a set x is transitive if and only if z ∈ y ∈ x implies z ∈ x. We
proceed by transfinite induction.

(i) V0 = ∅ so this case is trivial.
(ii) If z ∈ y ∈ Vα+1 = P (Vα), then y ⊆ Vα; this means z ∈ Vα. Since Vα is

transitive this gives that z ⊆ Vα, because any w ∈ z must also be in Vα.
Then we have that z ∈ Vα+1 = P (Vα).

(iii) Let λ be a limit ordinal and suppose that for all α < λ we have that Vα is
transitive. Then if z ∈ y ∈ Vλ =

⋃
α<λ Vα then z ∈ y ∈ Vβ for some β < λ.

Then by hypothesis z ∈ Vβ ⊊ Vλ (since Vλ is the union of all Vγ where
γ < λ) so we are done. ⊣

We will also need this basic result.

Lemma 1.4. If β < α, then x ∈ Vβ implies that x ∈ Vα.
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Proof. Suppose that x ∈ Vβ for some β < α. We proceed by induction on α.

(i) There are no β < 0 so the base case is trivial.
(ii) If β < α + 1 then either β = α or β < α. By induction we may assume

without loss of generality that β = α (if β < α then by hypothesis x ∈ Vα).
If x ∈ Vα, then x ⊊ Vα by transitivity (Lemma 1.3) and thus is an element
of Vα+1 = P (Vα).

(iii) Since, for λ a limit ordinal, Vλ =
⋃

β<λ Vβ , this case is immediate. ⊣

Finally, the following two results will be useful in the proof of Theorem 3.6.

Lemma 1.5. For all α ∈ On, we have α /∈ Vα.

Proof. We proceed by transfinite induction.

(i) V0 = ∅, so the base case is trivial.
(ii) Let α = β + 1, where by induction β /∈ Vβ . Suppose for contradiction that

α ∈ Vα, so β + 1 = β ∪ {β} ∈ Vβ+1 = P (Vβ). Then β ∪ {β} ⊆ Vβ , and thus
{β} ⊆ Vβ . This implies that β ∈ Vβ , a contradiction.

(iii) Now suppose that λ is a limit ordinal, β /∈ Vβ for all β < λ, and λ ∈ Vλ,
for contradiction. Then since Vλ =

⋃
β<λ Vβ , we have that λ ∈ Vδ for some

δ < λ. Since δ ∈ λ, by transitivity of Vδ (Lemma 1.3) we then get δ ∈ Vδ, a
contradiction. ⊣

Lemma 1.6. For all α ∈ On, α ⊆ Vα.

Proof. We proceed by transfinite induction.

(i) ∅ ⊆ x for all x ∈ V , so the base case is trivial.
(ii) Let α = β + 1 = β ∪ {β}, where by induction β ⊆ Vβ . Then β ∈ Vβ+1 =
P (Vβ), and thus {β} ⊆ Vβ+1. Also by the transitivity of Vβ , β ⊆ Vβ+1.
Therefore β ∪ {β} ⊆ Vβ+1 as required.

(iii) Let λ be a limit ordinal and suppose β ⊆ Vβ for all β < λ. Then if
δ ∈ λ, then δ ⊆ Vδ. Then since λ is a limit ordinal, δ + 1 < λ, and so
δ ∈ P (Vδ) = Vδ+1 ⊆ Vλ. Thus λ ⊆ Vλ as required. ⊣

Note that these are sufficient to show

Proposition 1.7. For all α ∈ On, rankα = α.

Proof. Lemma 1.6 shows that rankα ⩽ α. On the other hand, if rankα < α, then
α ⊆ Vβ for some β < α, and thus α ∈ Vβ+1 ⊆ Vα, which contradicts Lemma 1.5. ⊣

A brief note ought to be made on the use of ordinals and cardinals as indexing
subscripts (for example Vκ for κ some large cardinal, as we will see below). On
a modern view, we identify cardinalities with sets in a unique way via the von
Neumann cardinal assignment (an excellent discussion of the historical context
surrounding this is given in [Mos05, ch12]). This identifies the cardinality of a
well-orderable set (which all sets are by AC) with the smallest ordinal equinumerous
with it. For example we identify ℵ0 = ω, since the latter is the smallest infinite
countable ordinal. In general the aleph numbers have the following definition:
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Definition 1.8. Let α be any ordinal, and λ be a limit ordinal.

ℵ0 := ω

ℵα+1 := ℵ+α
ℵλ :=

⋃
β<λ

ℵβ .

◁

In the presence of choice, all infinite cardinal numbers are of this form for some
α ∈ On. Thus we see that all cardinals are also ordinals, and hence it is legitimate
to subscript by the former. With this potential confusion between ordinals and
cardinals in mind, we will use the term ‘limit’ in various ways in this essay; when
not clear from context the different usages will be qualified.

Definition 1.9.

(i) An ordinal λ > 0 is a limit if and only if it is not an ordinal successor.
(ii) A cardinal κ > 0 is a weak limit if and only if it is not a cardinal successor.

It is a strong limit if and only if for any δ < κ, we have 2δ < κ (where 2δ

indicates cardinal exponentiation). If a cardinal is described as simply a
‘limit’, this will mean ‘weak limit’. ◁

Note that in the presence of GCH (see Subsection 5.2), which says that κ+ = 2κ

for all κ ⩾ ℵ0, the concepts of strong and weak limit coincide. Also note that
all infinite cardinals are limit ordinals (since for any infinite ordinal α, we have a
bijection α→ α+ 1, so a cardinal can never be a successor ordinal). Another piece
of terminology we will use which could be confused with the above is to say that
κ is a limit of a collection of cardinals {δi < κ | i ∈ I}. What this means is that
for all γ < κ, there is a j ∈ I with γ < δj < κ. Of course in this case κ must be a
(weak) limit cardinal (else take γ to be the cardinal immediately preceding κ).

A related cause of confusion could be the conflation of orderings of cardinals and
ordinals: it is possible to have α < β as ordinals, however for α and β to have the
same cardinality. Since we are using cardinals in the place of ordinals in some places,
this could lead to ambiguity. It should almost always be obvious from context which
ordering is meant, however where it isn’t this will be clarified.

The following result will be useful; we also use it to establish the form in which we
will assume the axioms of ZFC (we follow [Jec03, p3]).

Theorem 1.10.

(i) For every α ∈ On, the structure ⟨Vα,∈⟩ satisfies extensionality, foundation,
union, choice, and separation.

(ii) For α any limit ordinal, ⟨Vα,∈⟩ satisfies all the axioms in (i) as well as
powerset and pairs.

(iii) For α a limit ordinal strictly greater than ω, ⟨Vα,∈⟩ satisfies all the axioms
in (i) and (ii), as well as infinity.

Note that the relevant model-theoretic notions here are defined in Subsection 1.2. We
do not consider replacement here, for reasons which will be explained in Subsection
1.3. Before we proceed with the proof, it is worth being clear about exactly what
we are aiming to show and how. There are then two main methods of proof. The
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first method is to show that an axiom holds true of every element of the relevant
level of the von Neumann hierarchy. For example for extensionality, we must show
that it holds for every choice of x, y ∈ Vα where Vα ⊨ x = y. The second applies
when an axiom posits the existence of a new set; we must then show that this set is
in the relevant level of the hierarchy. For example to prove that choice holds at Vα,
we must show that C ∈ Vα, where C is the choice set posited by the axiom.

Proof. We consider each of the axioms in turn.

Extensionality says that if x and y have the same elements, then x = y. Suppose
that for some α ∈ On, Vα ‘thinks’ that x and y have the same elements. We show
that in fact they do have the same elements, and thus x = y. This is almost
immediate from transitivity of Vα, shown in Lemma 1.3: if z ∈ x, then since x ∈ Vα
we have that z ∈ Vα and thus Vα ‘thinks’ that z is in y also, by hypothesis. Since
our argument is symmetrical in x and y, we get x = y as required.

Union says that for any x there exists a set y =
⋃
x, containing as its elements all

and only elements of sets in x. We must show that if x ∈ Vα for some α ∈ On, then
y, as given by union in V , is also in Vα. We proceed by induction.

(1) The base case is trivial as V0 is empty.
(2) If α = β + 1, then x ∈ Vα → x ⊆ Vβ . In particular, any z ∈ w ∈ x will be

in Vβz
for βz < β. Thus the collection of all such z – which is our y – must

be a subset of supz∈w∈x Vβz
⊆ Vβ , and thus an element of P (Vβ) = Vα, as

required.
(3) On the other hand if λ is a limit ordinal, then if x ∈ Vλ, then x ∈ Vβ for

some β < λ, and then we are done by induction.

Foundation asserts that every non-empty set has an ∈-minimal element; we require
a transfinite induction to prove this.

(1) The base case is trivial as V0 is empty.
(2) Suppose that the result holds for all x ∈ Vα, then if x ∈ Vα+1 were non-well-

founded, then it would contain a non-well-founded element y witnessing
this. However then y ∈ Vα, which contradicts that Vα is well-founded. Note
that this makes use of transitivity, since any element of y (and any element
of an element of y, and so on) must also be in Vα, and thus Vα must see
that y is non-well-founded.

(3) Now suppose that the result holds for all β < λ for λ a limit ordinal. Any
element of Vλ must be an element of Vα for some α < λ, so the result is
immediate.

Choice says that for any non-empty set x, there exists a ‘choice set’ C such that
|w ∩ C| = 1 for all non-empty w ∈ x. We need to show that the choice set C for a
given set x ∈ Vα is in Vα also. We proceed by induction.

(1) The base case is trivial as V0 is empty.
(2) If α = β + 1 and x ∈ Vα, then as with union we note that elements z of sets

in α will all come from Vβ , and thus C ⊆ Vβ , so C ∈ Vα, as required.
(3) If λ is a limit and x ∈ Vλ, then x ∈ Vβ for some β < λ. The result is then

immediate by induction.

Separation is an axiom schema which says for all φ = φ(x0, . . . , xn), a formula in Lst,
and for any x and p0, . . . , pn−1, there exists a set y = {u ∈ x | φ(u, p0, . . . , pn−1)}.
We require that if x ∈ Vα, then so is y. Clearly y ⊆ x; we show by induction that
this implies that y ∈ Vα.
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(1) The base case is trivial as V0 is empty.
(2) If α = β + 1, then x ⊆ Vβ , then since ⊆ is a transitive relation, y ⊆ Vβ .

Thus y ∈ Vα.
(3) If λ is a limit ordinal, then x ∈ Vλ implies that x ∈ Vβ for some β < λ, then

by induction y ∈ Vβ and we are done by Lemma 1.4.

Powerset says for any x there exists a set y = P (x), containing as its elements
all and only the subsets of x. If α is not a limit ordinal (the case where α = 0
is trivial), say α = β + 1, then any x ∈ Vβ+1 \ Vβ will have P (x) /∈ Vβ+1, else
x ∈ P (x) ∈ Vβ+1 = P (Vβ) implies x ∈ Vβ , which by hypothesis it isn’t. Thus
powerset doesn’t hold at successor ordinals. On the other hand, if x ∈ Vλ for λ a
limit, we have that x ∈ Vα for some α < λ. If w ∈ P (x), then w ⊆ x, so w ⊆ Vα.
Thus w ∈ P (Vα) = Vα+1, and so P (x) ⊆ Vα+1. This gives P (x) ∈ Vα+2 ⊆ Vλ (since
λ is a limit ordinal), so we are done.

Similarly for pairs, which asserts that for any a, b, there exists a set {a, b} which
contains exactly a and b: if x, y ∈ Vβ+1 \Vβ (where as above we have let α = β+1),
then if {x, y} ∈ Vβ+1, we would have that x, y ∈ Vβ , a contradiction. On the other
hand if λ is a limit, x, y ∈ Vα for α < λ, then {x, y} ∈ P(Vα), and thus is an element
of Vλ.

The axiom of infinity asserts that there exists a set Ω with the property that ∅ ∈ Ω,
and for any x ∈ Ω, we have x ∪ {x} ∈ Ω (where x ∪ y :=

⋃
{x, y}). We recall

that ω = {0, 1, 2, . . .}, where each n is identified with its von Neumann ordinal as
standard, is the unique successor set contained (as a subset) in all other successor
sets. Now we note that by construction Vω is the set of all hereditarily finite sets
(finite sets such that all of their elements are finite, and all of their elements’ elements
are finite, and so on): this follows quickly from an induction. In particular then, it
can’t contain ω, since this is an infinite set. On the other hand, ω ∈ Vω+1, since
n ∈ Vω for all n ∈ ω, thus the set {0, 1, . . .} must be in the powerset. Further, we
then get by Lemma 1.4 that ω ∈ Vα for α ⩾ ω + 1. ⊣

Note that at the lower levels, different formulations of the axioms can become
non-equivalent: for example AC has another statement asserting the existence of a
function f : x →

⋃
x such that for all y ∈ x, f(y) ∈ y. This however requires the

construction of functions, which in turn uses the Cartesian product, which relies on
the axiom of pairing, which we’ve established only works at limit ordinals.

A further definition which will be used in Subsection 2.3 is the following:

Definition 1.11. Given a partially ordered set (x,⩽), we say that y ⊆ x is cofinal
in x if and only if for any a ∈ x, there is b ∈ y with a ⩽ b. Noting that the ordinals
are partially (in fact totally) ordered by ⊆, we can then define the cofinality of
an ordinal α, cf α, as the least ordinal such that there is a sequence of length cf α
which is cofinal in α. An infinite cardinal κ with cf κ = κ is called regular, else it is
singular. ◁

Example 1.12.

(i) ω is regular, since for any α < ω (i.e. α finite) a sequence of length α has a
finite supremum.

(ii) cf (ω + 1) = 1, since {ω} is a sequence cofinal in ω + 1. This result clearly
generalises to all successor ordinals.
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(iii) cf ℵω = ω, since the sequence {ℵn | n ∈ ω} is cofinal in ℵω, and could not
be any shorter (for then it would be finite).

The following will be needed to define the Mahlo cardinals in Subsection 7.2.1:

Definition 1.13. Given an ordinal κ, a subset C ⊆ κ is closed unbounded, or club,
in κ if and only if (i) for every α ∈ κ, there is β ∈ C with α < β (unbounded),
and (ii) if B ⊆ C is such that every β ∈ B is less than a uniform α ∈ κ (i.e. B is
bounded in κ), then supB ∈ κ (closed). ◁

Definition 1.14. Given an ordinal κ, S ⊆ κ is stationary if and only if S ∩ C ≠ ∅
for all club C ⊆ κ. ◁

1.2. Basic model theory.

Definition 1.15. Given a first-order language L with predicate symbols {Pi}i∈I ,
function symbols {fj}j∈J , and constants {ck}k∈K , an L-structure is an object of
the form

M =
〈
M,
{
PMi

}
i∈I ,

{
fMj

}
j∈J ,

{
cMk
}
k∈K

〉
,

where PMi is an assignment of the n-ary predicate symbol Pi to a subset of Mn,
fMj is an assignment of the m-ary function symbol fj to a function Mm →M , and
cMk is an assignment of ck to any element of M . ◁

We assume familiarity with the definitions of interpretations and assignments. Note
that we will only be working with models of the form ⟨Vκ,∈Vκ⟩; when unambiguous
we will abbreviate these models to simply Vκ.

Given two modelsM, N , with universes M,N , respectively, we define the following:

Definition 1.16. An embedding M → N is an injective function π : M → N
such that the interpretations of the predicate, function, and constant symbols are
respected; i.e. for all n,m, for all n-ary predicate symbols P , for all m-ary function
symbols f , and for all constant symbols c:

(i) (a0, . . . , an−1) ∈ PM if and only if (π(a0), . . . , π(an−1)) ∈ PN ,

(ii) π(fM(a0, . . . , am−1)) = fN (π(a0), . . . , π(am−1)),

(iii) π(cM) = cN . ◁

In the above case, we abuse notation slightly and write π : M → N . With a
simple induction, one can show that an embedding in fact must respect all atomic
L-formulae. There are a number of special cases.

Definition 1.17. Given an embedding π :M→N :

(i) if π is a bijection M → N , then we sayM and N are isomorphic, and write
M∼= N ;

(ii) if π is the inclusion map (i.e. ifM ⊆ N), then we say thatM is a substructure
of N , written M ⩽ N ;

(iii) if π in fact preserves all L-formulae, so that M ⊨ φ(a0, . . . , an) if and
only if N ⊨ φ(π(a0), . . . , π(an)), we call π an elementary embedding. If our
elementary map is also an inclusion, then we say thatM is an elementary
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substructure of N and write M ≼ N . If M ≼ N and M ̸= N we write
M≺ N . ◁

Example 1.18.

(i) ⟨Z, <⟩ and ⟨2Z, <⟩ are both models of the theory of linear orderings with
no endpoints. There is an isomorphism π : Z → 2Z given by ‘fanning out
from 0’, π(m) = 2m, thus these models are isomorphic.

(ii) It is easy to see that Vκ ⩽ Vλ for any κ ⩽ λ; this will not in general be
elementary. For a simple example note that when φ = φ(x, y) is the sentence
asserting the existence of two distinct objects, i.e. ∃x∃y ¬x = y, we have
that V1 ⊭ φ, whilst V2 ⊨ φ; thus whilst we have V1 ⩽ V2, we do not have
V1 ≼ V2. We can extend this further: by using the same formulae expressing
‘there exist 2n distinct objects’, we can readily see Vm ̸≼ Vn for m < n
natural numbers. Moreover we can consider infinite cardinals: Vω ̸≼ Vκ for
any κ > ω (the ‘greater than’ here denoting the standard ordering of the
ordinals), since Vω ⊭ ‘there is an infinite set’, whilst ω ∈ Vκ for κ > ω, so
Vκ ⊨ ‘there is an infinite set’. If Vκ ≺ Vλ then we must have that κ is a limit
cardinal: if κ = δ+ then Vκ thinks that δ is the largest cardinal, whereas
κ ∈ Vλ for any λ > κ (by Lemma 1.4), so Vλ will not agree. We will return
to such concerns in Subsection 2.2.

The following classic theorem will also be useful (for proof see [CK90, ch2]).

Theorem 1.19 (Downwards Löwenheim-Skolem). If a set of first-order sentences
Σ has a model of cardinality κ, then it has a model of size λ for all |L| ⩽ λ ⩽ κ,
where |L| indicates the size of the set of all the formulae of the language.

Corollary 1.20 (Skolem’s paradox). If ZFC has a model, then it has a countable
model.

Proof. Lst is countable, thus if ZFC has a model, by Theorem 1.19 we are done. ⊣

Skolem’s result was called a paradox because the countable model obtained in
Corollary 1.20 allegedly contains uncountably many sets (this is a theorem of ZFC).
Really what’s happening here is that the concept of ‘uncountable’ means different
things to different models – the ‘uncountable sets’ in our countable model would
appear ‘from the outside’ (i.e. from a larger superstructure) to be countable. What
this shows is that the property of being countable is not absolute – it varies between
models. We will take care below to note when we are using that a property is
absolute.

The following result on absoluteness will be essential in several proofs below. The
proof is beyond the author, however see [Kun14, II.4].

Proposition 1.21. The notion ‘Vκ ⊨ φ’ is absolute between V and Vλ ∋ Vκ which
satisfies ZFC.

1.3. Gödel’s Incompleteness Theorems. Gödel’s theorems are of central im-
portance in almost all studies in the foundations of mathematics. In particular,
in set theory they limit our ability to prove the consistency of our theories, and
thus give rise to the consistency strength hierarchy which will be introduced in
Section 3. The results as initially developed were about Peano Arithmetic (PA)
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and its extensions: Gödel noticed that, given a certain amount of arithmetic, one
could ‘translate’ the formal language of arithmetic into statements about natural
numbers, a process called arithmetisation. In particular, we are able to arithmetise
the notions of provability and consistency, and use this to place limits on what we
are able to show within PA. We will give here a sketch of how these ideas may be
extended and applied in set theory. For a full presentation for PA see [Smi13].

Perhaps the key idea of arithmetisation is the use of Gödel numbering, which is a
process by which one can uniquely (and thus reversibly) associate each string in
the language of arithmetic with a natural number. It is well known that set theory
may be used as a foundation for all known mathematics, in that every assertion
of mathematics has a translation into the language of set theory, Lst. With this
in mind, a development of Gödel’s ideas many be given for ZFC, where instead of
natural numbers, we associate formulae in the language of set theory with sets, in
a unique way. This allows us to extend Gödel’s results to ZFC. The analogue of
Gödel numbers are then Gödel sets, which are defined as follows. The presentation
follows [Dra74, p90].

Definition 1.22. Given a formula φ, its Gödel set will be denoted ⌜φ⌝, and is
defined recursively. For atomic formulae with variables vi, vj :

(i) ⌜vi = vj⌝ = ⟨0, i, j⟩.
(ii) ⌜vi ∈ vj⌝ = ⟨1, i, j⟩.

For non-atomic formulae:

(i) ⌜φ ∨ ψ⌝ = ⟨2, ⌜φ⌝, ⌜ψ⌝⟩.
(ii) ⌜¬φ⌝ = ⟨3, ⌜ψ⌝⟩.
(iii) ⌜∃viφ⌝ = ⟨4, i, ⌜φ⌝⟩. ◁

Where as usual the ordered pair ⟨x, y⟩ is defined to be the Kuratowski pair
{{x}, {x, y}}, and then inductively ⟨x, y, z⟩ = ⟨x, ⟨y, z⟩⟩. By defining ⌜#⌝ to be
{{∅}}, we may then extend this definition to include sequences of formulae:

Definition 1.23. If φ0, . . . , φn are formulae in Lst, then the Gödel set representing
the sequence (φ0, . . . , φn) is ⟨⌜#⌝, ⌜φ0⌝, ⌜#⌝, . . . , ⌜#⌝, ⌜φn⌝, ⌜#⌝⟩. ◁

Note we must distinguish between sets as referred to in the metalanguage, and as
referred to in Lst; the latter will be disambiguated by writing them with an overline:
x. Thus if a formula F (v0) takes as an argument the set represented in Lst by the
Gödel set ⌜x⌝, this will be written F (⌜x⌝).

Once we have this duality between a certain subcollection of sets and formulae
of Lst, we are able to make Lst ‘talk about itself’ by writing down a formula
φ(x) which is true in V if and only if x is the Gödel set of some formula. With
this φ, we can then write down a formula ψS(x) which is true if and only if the
formula with Gödel set x is a logical axiom of the system S. Whilst we will not
do either of these constructions rigorously, it is intuitive that it should be possible,
as both our axiom system and language were defined recursively. With these,
we can write down a formula proofS(x, y), which asserts that x is the Gödel set
representing a proof of the formula with Gödel set y from axioms S, and then a
formula PrS(y) = ∃x proofS(x, y), which asserts that there is a proof of the formula
with Gödel set y from axioms S. As above we will not go through these constructions
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in full detail, however it should be fairly intuitive from the above remarks that it is
possible. For a more complete presentation (for PA), see [Kni21, pp8–12].

A key result is then the Diagonal Lemma:

Theorem 1.24. For any formula F (v0) in the language of set theory, there is a
formula C such that

ZFC ⊢ C ↔ F
(
⌜C⌝

)
.

Which has as an important corollary Tarski’s theorem on the undefinability of truth:

Theorem 1.25. There is no formula True in Lst such that V ⊨ True
(
⌜φ⌝

)
if and

only if V ⊨ φ.

Proof. Let F (v0) = ¬True(v0). Then by the Diagonal Lemma there is a formula C
in the language of set theory such that ZFC ⊢ C ↔ ¬True

(
⌜C⌝

)
. But then V ⊨ C

if and only if V ⊨ ¬True
(
⌜C⌝

)
if and only if V ⊨ ¬C, a contradiction. ⊣

Finally note we may define the formula ConS to be ¬PrS
(
⌜0 = 1⌝

)
. We are now

in a position to state Gödel’s incompleteness theorems. For simplicity (to avoid
having to introduce the notions of n- and ω-consistency), and since it will be useful
to us later, we will state the first theorem as generalised by Rosser in 1936.

Theorem 1.26. If T is a theory extending ZFC, then there is a sentence RT such
that if T is consistent, then T ⊬ RT , and T ⊬ ¬RT .

The sentence RT is known as the Rosser sentence for T , and asserts that if RT

itself is provable, then there is a shorter proof of ¬RT . Here ‘shorter’ means coming
earlier in the lexicographical ordering defined on the Gödel sets, where we must
extend the usual ordering ⩽ on On and define ⌜#⌝ ⩽ i for all i ∈ ω. This order
defines ⟨α0, . . . , αn⟩ ⩽lex ⟨β0, . . . , βm⟩ if and only if (α0 ⩽ β0), or (α0 = β0 and
α1 ⩽ β1), and so on.

Following on from the first, Gödel’s second incompleteness theorem relates to proofs
of consistency.

Theorem 1.27. If T is a consistent theory extending ZFC, then T ⊬ ConT .

Corollary 1.28. If ZFC is consistent, then ZFC ⊬ ConZFC.

This result is crucial to the properties of large cardinals, to be examined below.
With this result stated, we can now see why we excluded the axiom of replacement
in Theorem 1.10.

Theorem 1.29. If consistent, ZFC does not prove the existence of an α ∈ On such
that Vα ⊨ ZFC.

Proof. Let α > ω be such that Vα ⊨ ZFC. The existence of a model of ZFC implies
ConZFC, which we know by Corollary 1.28 that we can’t prove from within ZFC.
Thus the existence of such an α is not provable in ZFC. ⊣

2. Large cardinals

The notion of a ‘large cardinal’ is difficult, and very possibly impossible, to make
rigorous. The core idea however is that a cardinal κ is ‘large’ if its existence is (a) not
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known to be inconsistent with ZFC, and (b) can’t be proven from ZFC (i.e. ZFC is
consistent with the statement expressing ‘κ exists’). (This said, some large-cardinal
concepts such as the Reinhardt cardinals, introduced in Example 7.6(v), are known
to be inconsistent with ZFC, however may be consistent with ZF.) A typical first
introduction to large cardinals (such as [Kan08]) usually begins with the weakly
and strongly inaccessible cardinals (see Subsection 2.3), leading sometimes to the
erroneous view that these are the ‘smallest’ of the large-cardinal concepts. This is
not the case, and in fact I would argue a more natural place to start is with the
more recent notion of a ‘worldly’ cardinal, introduced by J.D. Hamkins in lectures
at the cuny Graduate Centre and nyu.

Whilst the focus of this thesis will be theories extending ZFC more broadly, much
of the below will focus only on large cardinals. We do this because there is a close
relationship between the two ideas: any large-cardinal concept A gives rise to a
family of associated theories: ZFC + ‘there is a cardinal of type A’, ZFC + ‘there
are κ cardinals of type A’ (for some cardinal κ), ZFC + ‘there is a proper class of
cardinals of type A’, and so on. On the other hand it is speculated that the duality
goes both ways: that every theory can, in some sense, be characterised in terms of
large cardinals. The sense intended here is equiconsistency, which will be defined in
Subsection 3.1. This will be returned to in Subsection 5.2.

2.1. Worldly and hyperworldly cardinals.

Definition 2.1. A cardinal κ is called worldly if and only if Vκ ⊨ ZFC. ◁

By Theorem 1.29, we note that the existence of such cardinals can’t be proven
within ZFC. We may give a generalisation of this concept:

Definition 2.2. A cardinal κ is α-worldly if and only if it is worldly and for all
β < α, κ is a limit of β-worldly cardinals. We call κ hyperworldly if and only if it is
κ-worldly. ◁

Note that on this definition, a worldly cardinal is exactly a 0-worldly cardinal.
Before we show that this notion of hyperworldly is the correct one, we note that
α-worldly cardinals satisfy the following desirable property:

Proposition 2.3. If κ is α-worldly, then it is β-worldly for all β < α.

Proof. Almost immediate: let κ be α-worldly and let β < α, then since every γ < β
is also less than α, we see that κ is a limit of γ-worldly cardinals for all γ < β, thus
is β-worldly. ⊣

Proposition 2.4. There is no κ which is (κ+ 1)-worldly, so more generally there
is no κ which is λ-worldly for λ > κ.

Proof. Suppose, for contradiction, that a cardinal κ can in fact be (κ+ 1)-worldly,
and let δ be the minimal such cardinal (which must exist by the well-ordering
theorem); then δ is a limit of δ-worldly cardinals. Let γ < δ be one of these. Since
δ is a limit, we know that γ + 1 < δ, and in particular, since γ is δ-worldly, by
Proposition 2.3 it is (γ + 1)-worldly, which contradicts the minimality of δ.

For the second part note that if κ could be λ-worldly for λ > κ, then by Proposition
2.3 it would be (κ+ 1)-worldly, a contradiction. ⊣
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This theorem shows that our notion of ‘hyperworldly’ is a good one: when κ is
κ-worldly, this is the furthest we can iterate our construction. Of course it isn’t the
furthest we can go overall, since we can simply define:

Definition 2.5. κ is α-hyperworldly if and only if it is hyperworldly and a limit of
β-hyperworldly cardinals for all β < α. κ is hyper-hyperworldly if and only if it is
κ-hyperworldly. ◁

We can keep proceeding with this in the obvious way by calling a hyper-hyperworldly
cardinal a hyper2-worldly cardinal and extending to the hyperβ-worldly cardinals,
then by taking limits obtain the α-hyperβ-worldly cardinals. In more detail (style
following [Car15, p.14]):

Definition 2.6. A cardinal κ is α-hyperβ-worldly if and only if
(i) κ is worldly;
(ii) for all η < β, κ is κ-hyperη-worldly;
(iii) for all γ < α, κ is a limit of γ-hyperβ-worldly cardinals. ◁

We get a result parallel to Proposition 2.4 which gives the ‘limit’ of this hierarchy:

Proposition 2.7. There is no κ which is 1-hyperκ-worldly.

Proof. We may essentially copy the proof of Proposition 2.4: suppose that δ is the
minimal 1-hyperδ-worldly cardinal, hence δ is a limit of (0-)hyperδ-worldly cardinals.
Let γ < δ be one of these. Then by definition γ is γ-hyperβ-worldly for all β < δ,
and thus in particular since γ < δ, γ is γ-hyperγ-worldly.This implies that γ is
1-hyperγ-worldly, which contradicts the minimality of δ. ⊣

We may however proceed as before and simply define new terminology to get around
this (again we follow [Car15, p.16]): call a hyperκ-worldly cardinal richly worldly.
Then we may define the α-richly worldly cardinals, the hyper-richly worldly cardinals,
the hyperα-richly worldly cardinals, the hyperα-richlyβ worldly cardinals, and so on:
we may keep doing this as long as we can invent new language/notation to show
what we are doing.

It should be noted that the property of being a worldly cardinal is not, in general,
absolute:

Theorem 2.8. It is consistent with ZFC that there is a cardinal κ such that V
believes that κ is worldly, however there is a model of ZFC, M ⩽ V , with the same
ordinals, such that M does not believe that κ is worldly.

The proof of this involves forcing and thus is above the level of this essay, however
see [Ham17].

2.2. Otherworldly and hyper-otherworldly cardinals.

Definition 2.9. A cardinal κ is called otherworldly if and only if there exists a
λ > κ such that Vκ ≺ Vλ. ◁

Example 1.18 gives a sense of ‘how large’ such cardinals must be. In fact as a
preliminary result we have:
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Theorem 2.10. If κ is an otherworldly cardinal then it is worldly, so Vκ ⊨ ZFC.

Proof. Suppose that λ > κ is such that Vκ ≺ Vλ; we first show that κ is a limit
greater than ω, and thus by Theorem 1.10 must model ZFC without replacement.
Suppose, for contradiction, that κ = α + 1 for some α. Then we have that
Vκ ⊨ ‘α is a maximal element’. On the other hand, in Vλ, α is not maximal (since
λ > κ, Vλ must at least contain α+1 = κ), thus Vλ ⊭ ‘α is a maximal element’; this
contradicts our assumption that Vκ and Vλ agree on all formulae of Lst. Similarly
to see that κ > ω note that if κ = ω then λ > ω and thus Vκ ⊭ infinity, whilst
Vλ ⊨ infinity.

We now turn to replacement: let A ∈ Vκ and suppose that for each a ∈ A, there is a
unique b ∈ Vκ such that φ(a, b, z0, . . . , zn), for some formula φ in Lst and where the
zi are arbitrary parameters. Then if B is the collection of all such b, we have that
B ⊆ Vκ; thus since λ is strictly greater than κ, so in particular is at least κ+ 1, we
have that B ∈ Vλ. In particular, Vλ thinks that B – the replacement set – is a set;
since this is expressible in Lst, Vκ must also think that the replacement set is a set,
thus replacement is satisfied. ⊣

This result gives us a sense of the size of the otherworldly cardinals, and shows that
they are genuinely large cardinals, insofar as we can define what it means to be a
large cardinal (since, being worldly, their existence can’t be proven in ZFC). We
note that we also see that the smallest worldly cardinal is not otherworldly, so the
concepts genuinely are distinct: let κ be the smallest worldly cardinal, so that Vκ ⊭
‘there is a worldly cardinal’. On the other hand for any λ > κ, Vλ ⊨ ‘there is a
worldly cardinal’, so Vκ can never be an elementary substructure of a larger Vλ.

We may sharpen this result on the size of the otherworldly cardinals to further
emphasise how these concepts diverge.

Theorem 2.11. If κ is otherworldly, it is hyperworldly, and hyper-hyperworldly,
and in fact α-hyperβ-worldly for all α, β for which Definition 2.6 makes sense.

Proof. Let λ > κ be such that Vκ ≺ Vλ. We will first show that κ is hyperworldly,
i.e. that it is α-worldly for all α ⩽ κ. We induct on α: the base case follows from
Theorem 2.10, since by definition 0-worldly just means worldly. Now suppose that κ
is α-worldly; then it is a witness to the sentence asserting that for all γ < κ there is a
β such that β is α-worldly and β > γ in Vλ. Therefore since by elementarity Vκ and
Vλ must agree on all Lst-formulae, there must be such a witness in Vκ (which must
then be less than κ, since κ /∈ Vκ by Lemma 1.5). Thus κ is a limit of α-worldly
cardinals so is (α+ 1)-worldly. The limit case is immediate: if κ is β-worldly for all
β < λ a limit, then for any γ < λ, κ is a limit of γ-worldly cardinals (since it is also
(γ + 1)-worldly), so is λ-worldly.

To generalise this result, we note that at no point in the proof did we use any
properties of the α-worldly cardinals other than the limit requirement in the def-
inition; since this is maintained as we ascend the hyper-hierarchy, the proof will
still go through for these levels too (the base case just shifts, however will always
follow from the ‘previous’ induction – we have shown an otherworldly cardinal is
hyperworldly, and thus 0-hyperworldly, and so on). ⊣

Thus we see that the otherworldly cardinals exceed the entire worldly hierarchy
with respect to direct implication, as defined in Subsection 3.3. As with the worldly
cardinals, we may similarly extend the otherworldly cardinals.
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Definition 2.12. A cardinal κ is α-otherworldly if and only if it is worldly and
for all β < α there is a λ > κ such that Vκ ≺ Vλ and λ is β-otherworldly. κ is
hyper-otherworldly if and only if it is α-otherworldly for all α ∈ On. ◁

Note that on this definition 0-otherworldly means worldly, and 1-otherworldly
means otherworldly. Further, this definition certainly doesn’t give us that an α-
otherworldly cardinal gives rise to an elementary chain of length α – for example
being ω-otherworldly only gives that we can get chains arbitrarily close to ω in
length, rather than a chain of length ω itself. In fact we have the two following
results.

Theorem 2.13. If there is an elementary chain of length ω

Vκ0
≺ Vκ1

≺ · · · ≺ Vκn
≺ · · ·

then each κi, i ∈ ω is hyper-otherworldly.

Proof. We prove by strong induction on α that κi is α-otherworldly for each α ∈ On,
for each i ∈ ω. Being 0-otherworldly by above simply means being worldly, however
this is clearly true since each κi is otherworldly. Now suppose that for all β < α we
have that every κi is β-otherworldly. Then clearly any Vκj

can be extended by a
Vκj′ where j′ > j and κj′ is β-otherworldly; thus κj is α-otherworldly and we are
done. ⊣

Theorem 2.14. If κ is otherworldly, then there is a λ > κ such that Vκ ≺ Vλ and
Vλ ̸≺ Vλ′ for all λ′ > λ.

Proof. Suppose not for a contradiction: then given any otherworldly κ, we get an
elementary chain

Vκ ≺ Vλ ≺ Vλ′ ≺ · · ·
unbounded in V . But since we can define a truth predicate TrueVα in each of the
Vα, each only being a set model, where α ∈ I = {κ, λ, λ′, . . .}, this would give us a
means of defining a truth predicate in V =

⋃
α∈I Vα, by setting

TrueV
(
⌜φ⌝

)
= TrueVα

(
⌜φ⌝

)
,

for some α ∈ I (where the choice of α is unimportant by elementarity). However
the construction of a truth predicate in V contradicts Theorem 1.25. ⊣

We easily obtain a theorem paralleling Proposition 2.3, however note that we get no
parallel of Proposition 2.4 (see the comment below Corollary 2.22 for more on this).

Proposition 2.15. If κ is α-otherworldly, then it is β-otherworldly for all β < α.

We may then extend the otherworldly cardinal hierarchy in the natural way.

Definition 2.16. A cardinal κ is α-hyperβ-otherworldly if and only if
(i) κ is otherworldly;
(ii) For all δ, for all η < β, κ is δ-hyperη-otherworldly;
(iii) For all γ < α, κ is a limit of γ-hyperβ-otherworldly cardinals. ◁

Note as with worldliness, the property of being otherworldly is not in general
absolute:
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Theorem 2.17. If κ is otherworldly in V , then we may find a model M ⩽ V which
does not believe that κ is otherworldly.

Proof. Let λ > κ be the minimal cardinal such that Vκ ≺ Vλ. Vλ does not believe
that κ is otherworldly, else there would be a λ′ > κ in Vλ such that Vκ ≺ Vλ.
However, this contradicts minimality of λ. ⊣

We will now move to relate these new concepts to another more well-studied class
of large cardinals.

2.3. Inaccessibility.

Definition 2.18. A cardinal κ is inaccessible if and only if it is uncountable, regular
(cf κ = κ), and a strong limit cardinal (δ < κ implies 2δ < κ). ◁

Note we may also define the weakly inaccessible cardinals by exchanging ‘strong limit’
for ‘weak limit’ in the above. We will show, among other things, that inaccessible
cardinals are worldly, for which we will need the following (proofs following [Kan08,
ch1.1]).

Lemma 2.19. For x ⊆ Vκ where κ is inaccessible, we have that x ∈ Vκ if and only
if |x| < κ.

Proof. [→] Suppose that x ∈ Vκ, then for some α < κ, |x| ⩽ |Vα| < |Vκ|, since x is a
subset of Vκ. Thus it suffices to show that |Vα| < κ for all α < κ. This follows from
a quick induction: the base case is obvious; if |Vα| < κ, then |Vα+1| = 2|Vκ| < κ
since κ is a strong limit; if |Vβ | < κ for all β < λ, then note that {|Vβ | | β < λ} is a
sequence bounded in κ of length less than κ; since κ is regular, this implies that
|Vλ| = supβ<λ |Vβ | < κ.

[←] Recall rank z is the minimal α such that z ⊆ Vα. Now let |x| < κ, then (similarly
to above) the set R = {rank y | y ∈ x} consists of a sequence bounded in κ of length
less than κ, thus R ⊆ α for some α < κ; then x ∈ Vα+1 ⊊ Vκ. ⊣

We may now show:

Theorem 2.20. If κ is inaccessible, then Vκ ⊨ ZFC, so κ is worldly.

Proof. Since κ is an infinite cardinal and thus a limit ordinal by definition, and since
by definition it is greater than ℵ0, we simply need to show that Vκ ⊨ replacement;
the rest follows immediately from Theorem 1.10. Let x ∈ Vκ and suppose that
φ is such that for all y ∈ x and v0, . . . , vn variables, there is a unique z ∈ Vκ
with φ(y, z, v0, . . . , vn). Then if Z ⊆ Vκ is the collection of all such z, note that
|Z| ⩽ |x| < κ; then by Lemma 2.19, Z ∈ Vκ, so replacement holds. ⊣

Thus we see that the inaccessible cardinals exceed the entire worldly hierarchy, also
in the sense of direct implication, as defined in Subsection 3.3. We have a related,
however different result for the otherworldly cardinals, Proposition 3.9, for which
we will need the following.

Proposition 2.21. If κ is inaccessible, then there are arbitrarily large λ < κ such
that Vλ ≺ Vκ.
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Proof. Let {φ0, φ1, . . .} be an enumeration of the formulae of Lst; let α0 < κ. Our
choice of α0 determines our λ: we may choose α0 < κ arbitrarily large and the
proof still goes through. For each n,m ∈ ω and (a0, . . . , am) = a ∈ V m+1

α0
consider

whether Vκ ⊨ ∃xφn(x, a) (V m+1
α0

denotes the (m+1)-fold Cartesian product of Vα0).
If this is the case, then define βn,a to be the minimal ordinal less than κ such that
there is a witness for ∃xφn(x,a) in Vβn,a .

Now let α1 = supn,m,a βn,a; since κ is regular, and we are considering the union of
a set with fewer elements than κ, we must have α1 < κ. Continuing this inductively
we may define λ = supn αn which must by similar regularity considerations also be
less than κ.

Since we have constructed our λ such that Vλ contains witnesses for all the true
existentials in Vκ, by the Tarski-Vaught criterion and the fact that Vλ < Vκ (since
λ < κ), we have that Vλ ≺ Vκ. ⊣

Corollary 2.22. If κ is inaccessible, then there is a continuous elementary chain

Vγ0
≺ Vγ1

≺ · · · ≺
⋃
α<κ

Vγα
= Vκ.

Note by ‘continuous’ here we mean that at limit ordinals λ ⩽ κ we have γλ =⋃
β<λ γβ .

Proof. We can define such a sequence by transfinite recursion as follows: (i) let γ0
be any λ as given by Proposition 2.21; (ii) let γα+1 be any λ′ such that γα < λ′ < κ,
which we also know we can construct by Proposition 2.21; (iii) finally define γδ for
δ a limit ordinal to be

⋃
β<δ γβ , which is less than κ by regularity. We show that

this sequence has the desired properties.

To see that for all α, Vγα
≺ Vκ, note that in case (i) it is immediate. In case (ii) it

follows since Vγα
< Vγα+1

and Vγα
, Vγα+1

≺ Vκ, thus Vγα
≺ Vγα+1

(if not then there
would be a formula they disagree on, but this would contradict their elementarity
in Vκ). Case (iii) follows immediately since the union of an elementary chain is
an elementary superstructure of each of its elements, and thus in particular an
elementary substructure of Vκ, since γδ ⩽ κ. Continuity is immediate from the
definition. ⊣

Note that by definition the γαs are κ-otherworldly, since they each have a chain of
length κ extending them; this shows that a cardinal γ may be λ-otherworldly for
λ > γ, in contrast to the α-worldly cardinals.

Theorem 2.23. If κ is inaccessible, then it is hyperworldly, and hyper-hyperworldly,
and. . .

Proof. Let κ be an inaccessible cardinal and consider the chain {γα | α < κ} given
by Corollary 2.22.

First note that γα is worldly for all α < κ: by construction γα is otherworldly;
then apply Theorem 2.10. Then we have that γω, which by continuity is

⋃
n∈ω γn,

is a limit of worldly cardinals, and thus is 1-worldly. Similarly we conclude that
γω·2 =

⋃
n∈ω γω+n is 1-worldly, and so on for n ∈ ω. Thus γω2 =

⋃
n∈ω γω·n is a

limit of 1-worldly cardinals, so is 2-worldly.
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We can inductively continue this construction, which must remain bounded in κ
by regularity, to get α-worldly γα for all α < κ. In particular, we can iterate this
construction at any ordinal below κ to obtain an α-worldly γα, α < κ, which again
by regularity must be less than κ. By construction κ must be a limit of these γα, so
is thus a limit of α-worldly cardinals for all α < κ; this is the definition of κ being
hyperworldly.

As with previous results to generalise we note that all the above proofs also go
through mutatis mutandis (where we must apply Theorem 2.11 to ensure the base
case goes through). ⊣

Whilst we will see in Subsection 3.2 that the inaccessible cardinals exceed the
otherworldly cardinals in terms of consistency strength, the following result might
make us nervous:

Theorem 2.24. There is an inaccessible cardinal κ which is not otherworldly.

Proof. Let κ be the smallest inaccessible cardinal (which must exist by well-ordering).
Then whilst Vκ ⊭ ‘there is an inaccessible cardinal’, for any λ > κ we have κ ∈ Vλ
and thus Vλ ⊨ ‘there is an inaccessible cardinal’ (since the property of being an
inaccessible cardinal is absolute between V and the von Neumann hierarchy). Thus
we can’t have Vκ ≺ Vλ for any λ > κ. ⊣

We do however have:

Theorem 2.25. Every inaccessible cardinal is a limit of otherworldly cardinals.

Proof. Note that in Theorem 2.22, κ is a limit of the γαs, which as noted above are
all κ-otherworldly, and in particular by Proposition 2.15, otherworldly. ⊣

We may strengthen this result by noting that in fact each of the γαs must be
hyper -otherworldly in Vκ, since they are κ-otherworldly (outside of Vκ) and hence
α-otherworldly for all α < κ. Vκ will attest this for each α < κ, thus we are
done. Compare this with Theorem 2.13. We can continue this to show that in
fact Vκ proves that there is a class of hyper2-otherworldly cardinals, and so on as
above. This result allows us to prove that the inaccessible cardinals ‘exceed’ the
otherworldly cardinals in another sense – minimal occurrence – which will be defined
in Subsection 3.3.

We now move on to discuss the consistency strength hierarchy, in which we will
place our new cardinals.

3. The consistency strength hierarchy

Several different hierarchies have been developed in the study of set theory; more
discussion around the philosophy surrounding the one we study here will be given
in Part II. Here I will introduce the consistency strength hierarchy as defined by
Steel in [Ste12], and locate within it the cardinals we have considered above.

3.1. Steel’s hierarchy. In [Ste12, p3], John Steel introduces the notion of the
consistency strength hierarchy, which is intended to provide a ‘ranking’ of theories
extending ZFC; let T,U be two such theories.
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Definition 3.1. We say T ⩽Con U , or that U is of greater-than or equal consistency
strength to T , if and only if ZFC ⊢ ConU → ConT . If we additionally have that
ZFC ⊬ ConT → ConU then we write T <Con U . If T ⩽Con U ⩽Con T , then
we write T ≡Con U and say T and U have the same consistency strength, or are
equiconsistent. ◁

Note by Example 3.3(i) we see that ⩽Con is not antisymmetric and thus not a
partial order: we have ZFC ⩽Con ZFC+ CH ⩽Con ZFC, however ZFC ̸= ZFC+ CH
(see Corollary 5.1). We do however get reflexivity and transitivity:

Proposition 3.2. If T is the space of theories extending ZFC, then ⩽Con forms a
reflexive and transitive order on T.

Proof. Reflexivity : clearly ZFC ⊢ ConT → ConT for any T , and thus T ⩽Con T for
any T .

Transitivity : if S ⩽Con T ⩽Con U , then ZFC ⊢ ConU → ConT and ZFC ⊢ ConT →
ConS. Then by hypothetical syllogism, ZFC ⊢ ConU → ConT . ⊣

In the standard way we can then turn ⩽Con into a partial order by considering
theories which are equivalent up to equiconsistency.

Example 3.3.

(i) It is well-known from the work of Gödel and Cohen that ZFC ≡Con ZFC+
CH ≡Con ZFC+ ¬CH. See Subsection 5.2 for more detail.

(ii) Trivially, the inconsistent theory is a maximal element under ⩽Con.
(iii) Clearly ZFC + ConZFC ⊢ ConZFC, thus by Proposition 3.4 ZFC <Con

ZFC+ConZFC. More generally, we note that no theory (which is not known
to be inconsistent) has the greatest consistency strength, since we can always
add to a theory T the statement ConT , which by Gödel will be strictly
stronger.

In [Ham21, p3], Joel David Hamkins notes a more convenient sufficient condition
for T <Con U :

Proposition 3.4. If T,U are consistent extensions of ZFC and U ⊢ ConT , then
T <Con U .

Proof. First we show that ZFC ⊢ ConU → ConT , i.e. that T ⩽Con U . Suppose
that U ⊢ ConT and let M be any model of ZFC + ConU ; we must have that
M ⊨ Con (U +ConT ). For suppose not, so M ⊨ ¬Con (U +ConT ). Then M
believes there is a proof of a contradiction from U +ConT . Since U ⊢ ConT , this
proof can be recast purely in terms of axioms of U , and thus we would have that
M ⊨ ¬ConU , which contradicts the definition of M.

We must then haveM ⊨ ConT , since if M ⊨ ¬ConT , thenM believes there is a
proof of this, and thus that there is a proof of this from U +ConT , since adding
axioms doesn’t affect proofs we already have. Clearly M believes that there is a
proof of ConT from U + ConT , thus M believes that U + ConT is inconsistent,
since it proves φ,¬φ for some φ. This contradicts thatM ⊨ Con (U +ConT ). Thus
we must have M ⊨ ConT . In particular, since M was arbitrary, we have shown
that ZFC+ConU ⊢ ConT , and thus ZFC ⊢ ConU → ConT , as required.
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On the other hand, to see that ZFC ⊬ ConT → ConU , note that if the implication
were provable, then since U ⊢ ConT by hypothesis, and U extends ZFC and thus
also U ⊢ ConT → ConU , we would have by modus ponens U ⊢ ConU . This
contradicts Theorem 1.27.

Therefore we have T <Con U , as required. ⊣

It should be noted that the condition in Proposition 3.4, whilst sufficient, is not
necessary: there exist theories T,U such that T <Con U although U ⊬ ConT . For
example, adapting Theorem 4 of [Ham21], we may find a U such that ZFC <Con

U <Con ZFC+ ConZFC. Following Hamkins’ notation, such a U will be given by
the theory

(ZFC+ConZFC) ∨ (ZFC+RS),

where RS is the Rosser sentence of the theory

S = ZFC+Con (ZFC) + ¬Con (ZFC+ConZFC).

This is the theory with sentences of the form φ ∨ (ψ ∧ RS) for φ a theorem of
ZFC + ConZFC, and ψ a theorem of ZFC. Note that such a U entails all the
theorems of ZFC, since any theorem of ZFC is derivable from both ZFC+ConZFC
and ZFC+RS . For further details on the construction see Hamkins’ paper.

Proposition 3.5. With U as above, it is the case that (i) ZFC <Con U and (ii)
U ⊬ ConZFC.

Proof. (i) is immediate from the definition of U and Proposition 3.4. For (ii), suppose
for contradiction that U ⊢ ConZFC. Now as noted above, by the construction of U
we also have that U ⊢ ZFC, so we have U ⊢ ZFC+ ConZFC. Thus any proof of a
contradiction from ZFC+ConZFC would also be a proof a contradiction from U ,
thus we have (noting as usual ZFC is our background theory)

ZFC ⊢ ¬Con (ZFC+ConZFC)→ ¬ConU,

thus
ZFC ⊢ ConU → Con (ZFC+ConZFC).

However by hypothesis, since U <Con ZFC+ConZFC, we have

ZFC ⊬ ConU → Con (ZFC+ConZFC),

which gives our contradiction. ⊣

3.2. Placing the worldly and otherworldly cardinals in the hierarchy.
Figure 1 at the end of this section illustrates where the cardinals developed lie
in the consistency strength hierarchy. We will show a selection of corresponding
results (those stated but not proven follow in a similar manner). For typograph-
ical ease, we introduce the notation αWβ and αOβ to mean ‘there are β many
α-worldly/otherworldly cardinals’, respectively, with the additional stipulations
that we write simply Wβ and Oβ for ‘there are β worldly/otherworldly cardinals’,
and we write β = ∞ (i.e. αW∞, αO∞) to mean ‘there is a proper class of α-
worldly/otherworldly cardinals’. The same style but with HW and HO indicates
the same statements about hyperworldly/hyper-otherworldly cardinals (we will not
prove results that require notation beyond this). For example αHWβ will mean
‘there are β many α-hyperworldly cardinals’. We will also write I for the statement
‘there is an inaccessible cardinal’.
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Theorem 3.6.

(i) ZFC,ZFC+ConZFC, . . . <Con ZFC+W1.
(ii) ZFC+W1 <Con ZFC+W2.
(iii) ZFC+W∞ <Con ZFC+ 1W1.
(iv) ZFC+ 1W∞ <Con ZFC+ 2W1.
(v) ZFC+ αW∞ <Con ZFC+ HW1, where α is any ordinal less than the hyper-

worldly cardinal stipulated.
(vi) ZFC+ HW1 <Con ZFC+ O1.
(vii) ZFC+ O1 <Con ZFC+ 2O1

(viii) ZFC+ HO1,ZFC+ HO2, . . . <Con ZFC+ I.

Proof. We use the sufficient condition on of T <Con U from Proposition 3.4 and in
each case show that U ⊢ ConT (for relevant T,U). To show that ConT follows from
U , we give a model of T , given that U holds; this suffices to show that U ⊢ ConT
since by soundness, the existence of a model of a theory implies that theory’s
consistency.

(i) Define by recursion the following sequence of theories:
S0 = ZFC
Sn+1 = Sn +ConSn.

The required result by Proposition 3.4 is then that ZFC+W1 ⊢ ConSn for
all n ∈ ω. Proceed by induction. Note that if κ is the worldly cardinal given
by ZFC +W1, then by soundness it suffices to show that Vκ ⊨ Sn for all
n ∈ ω.
The base case follows because by hypothesis Vκ ⊨ ZFC = S0.
Suppose that Vκ ⊨ Sn. Then V believes that Sn is consistent, i.e. believes
ConSn (since Sn has a model). Now Vκ is transitive by Lemma 1.3, and thus
by a result beyond the author (which will be mentioned again in Subsection
7.2.2), must agree with V on arithmetic truths; see [Kun14, Lemma II.4.14]
for more details. Consistency statements are, by construction, arithmetic
truths, and thus Vκ ⊨ ConSn. Therefore we have Vκ ⊨ Sn+ConSn = Sn+1,
as required.

(ii) Let κ1 < κ2 be worldly cardinals. Since κ1 < κ2, we must have that
Vκ1 ∈ Vκ2 . By worldiness, the hypotheses of Proposition 1.21 are satisfied,
and thus Vκ2 believes that Vκ1 ⊨ ZFC. Thus Vκ2 believes that there is a
worldly cardinal (i.e. κ1).

(iii) Let κ be 1-worldly, so it is a limit of worldly cardinals, so there are worldly
κα < κ (α < β for some β ∈ On) such that κ = sup {κα | α < β}. By
similar remarks as in (ii), κ must believe all of the κi are worldly. I claim
that this collection is a proper class in Vκ, i.e. {κα | α < β} /∈ Vκ and
{κα | α < β} ⊆ Vκ. For the latter note that κ ⊆ Vκ by Lemma 1.6, and thus
since each κα ∈ κ, their collection is a subset of Vκ. For the former suppose
not for contradiction: then since Vκ ⊨ ZFC by Proposition 2.3, and in
particular the axiom of union,

⋃
{κα | α < β} = sup{κα | α < β} = κ ∈ Vκ.

This contradicts Lemma 1.5. In particular, we have shown Vκ believes that
there is a proper class of worldly cardinals, which suffices.

(iv) This proof is identical to (iii), however with ‘2-worldly’ replacing ‘1-worldly’,
and ‘1-worldly’ replacing ‘worldly’.

(v) Let κ be a hyperworldly cardinal, so κ is worldly and a limit of β worldly
cardinals for all β < κ. Fix any α < κ, and let κ be a limit of the α-worldly
cardinals {κδ | δ < γ} for some γ ∈ On. Similarly to (iii), we must have
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that {κδ | δ < γ} /∈ Vκ and {κδ | δ < γ} ⊆ Vκ, so as in (iii) we are done.
Since α < κ was arbitrary this completes the proof.

(vi) Suppose that κ is otherworldly, so there is λ > κ with Vκ ≺ Vλ. Then by
the proof of Theorem 2.11, Vλ believes that κ is hyperworldly, so we have a
model of ZFC+ HW1, as required.

(vii) Let κ be 2-otherworldly, so there are κ < λ < λ′ with Vκ ≺ Vλ ≺ Vλ′ . Then
in particular, in Vλ′ we have that Vκ ≺ Vλ, and thus Vλ′ believes there is an
otherworldly cardinal. (Note the elementary equivalence holds according to
Vλ′ by Proposition 1.21, since Vλ′ is transitive and models ZFC).

(viii) Let κ be inaccessible, so there is by Theorem 2.22 an elementary chain
Vκ0
≺ Vκ1

≺ · · · ≺ Vκ. In particular, Vκ believes that there is an elementary
ω-chain extending Vκ0

, and thus by Theorem 2.13 it believes that κ0 is
hyper-otherworldly. Indeed Vκ will believe that each of the κ-many κi are
hyper-otherworldly by identical logic. Thus we have our result. ⊣

3.3. Alternative hierarchies. A number of alternative hierarchies for classifying
large-cardinal concepts have been developed. I will briefly detail two here, and relate
them to each other and ⩽Con.

Definition 3.7. Given two large-cardinal concepts A and B, we say that A ⩽← B
if and only if whenever ZFC proves that a cardinal κ is of type B, ZFC also proves
that κ is of type A This gives the direct implication hierarchy. ◁

Definition 3.8. Given two large-cardinal concepts A and B, we say that A ⩽min B
if and only if the least cardinal of type A is less than or equal to the least cardinal
of type B. This gives the minimal instance hierarchy. ◁

Note that in talking here about ⩽←, ⩽min, and ⩽Con, there is a slight elision between
theories and large-cardinal concepts, the latter of which more properly refers to
definitions. For example ZFC + ‘there is a worldly cardinal’ is a theory, whereas
the large-cardinal concept ‘worldly’ refers to the definition of a worldly cardinal.
Properly speaking, ⩽Con is an order on theories (not just about large cardinals), and
⩽min,⩽← are orders on large-cardinal concepts. In the below therefore we abuse
notation slightly and pretend ⩽Con is an order on large-cardinal concepts, simply
by defining A ⩽Con B if and only if ZFC + ‘there is a cardinal of type A’ ⩽Con ZFC
+ ‘there is a cardinal of type B’.

We may now formalise the remark made at the end of Subsection 2.3.

Proposition 3.9. O ⩽min I.

Proof. Recall as in Corollary 2.22 that any inaccessible cardinal has many other-
worldly cardinals below it. Thus if κ is the smallest inaccessible cardinal, then the
smallest otherworldly cardinal must be smaller than it. ⊣

Theorem 3.10. Considered as classes, we have (i) ⩽← ⊊ ⩽min, (ii) ⩽← ⊊ ⩽Con,
(iii) ⩽Con ⊈ ⩽min and (iv) ⩽min ⊈ ⩽Con.

Proof. In order to show ⩽ ⊆ ≼ for two large-cardinal orders ⩽,≼, we need to
show that for any large-cardinal concepts A,B, we have A ⩽ B implies that A ≼ B.
Similarly to show ⩽ ⊈ ≼, we need to give examples of large-cardinal concepts A,B
such that A ⩽ B, but A ̸≼ B.
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(i) Suppose that A ⩽← B, for two large-cardinal concepts A and B. Then if V
believes that κ is of type B, V believes that κ is of type A. Thus the smallest
instance of a cardinal of type B will also be a cardinal of type A, and thus
the smallest instance of a cardinal of type A will be at most this size, thus
A ⩽min B. To see that the containment is proper, note that by 2.25, the
smallest otherworldly cardinal will be smaller than the smallest inaccessible
cardinal, since the latter must be a limit of otherworldly cardinals; thus
O ⩽min I (where we have adapted the notation from Subsection 3.2 in the
obvious way). On the other hand, Theorem 2.24 gives us that there is an
inaccessible cardinal which is not otherworldly, and thus O ̸⩽← I.

(ii) Suppose that A ⩽← B. Then if ZFC ⊢ ¬Con (ZFC+ A), since ZFC proves
that every A-cardinal is also a B-cardinal, this means we must also have
ZFC ⊢ ¬Con (ZFC+ B). Thus by contraposition ZFC ⊢ Con (ZFC+ B) →
Con (ZFC+ A), so A ⩽Con B, as required. On the other hand, by Theorem
3.6, O ⩽Con I, however as above, we have that O ̸⩽← I, so our containment
is strict.

(iii), (iv) Both can be tackled in the same way, by noting that the existence of strong
cardinals has lower consistency strength than the existence of superstrong
cardinals (both defined in Example 7.6), yet the least superstrong cardinal
is less than the least strong cardinal. The details of these proofs may be
found in [Kan08, pp358–365]. If we let Strong and Superstrong denote the
strong and superstrong large-cardinal concepts, respectively, then we have
Strong ⩽min Superstrong, and Superstrong ⩽Con Strong, showing that the
two orders ⩽min, ⩽Con, are ⊆-incomparable. ⊣
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ZFC+ ‘there is an inaccessible cardinal’
...

ZFC+ ‘there is a richly otherworldly cardinal’
...

ZFC+ ‘there is a hyper-hyper-otherworldly cardinal’
...

ZFC+ ‘there is a hyper-otherworldly cardinal’
...

ZFC+ ‘there is a 2-otherworldly cardinal’
...

ZFC+ ‘there are two 1-otherworldly cardinals’
ZFC+ ‘there is a 1-otherworldly cardinal’

...
ZFC+ ‘there are two otherworldly cardinals’
ZFC+ ‘there is an otherworldly cardinal’

...
ZFC+ ‘there is a richly worldly cardinal’

...
ZFC+ ‘there is a hyper-hyperworldly cardinal’

...
ZFC+ ‘there is a hyperworldly cardinal’

...
ZFC+ ‘there is a 2-worldly cardinal’

...
ZFC+ ‘there are two 1-worldly cardinals’
ZFC+ ‘there is a 1-worldly cardinal’

...
ZFC+ ‘there is a proper class of worldly cardinals’

...
ZFC+ ‘there are two worldly cardinals’
ZFC+ ‘there is a worldly cardinal’

...
ZFC+ConZFC+Con (ZFC+ConZFC)
ZFC+ConZFC
ZFC

Figure 1. The new cardinals fit linearly into the consistency
strength hierarchy. The vertical dots indicate in general a large
leap in consistency strength.



part ii: is the consistency strength hierarchy linear?

A common – indeed almost unanimous – view among modern set theorists is that
the consistency strength hierarchy exhibits linearity in its ‘natural’ theories. In his
paper on the subject, Hamkins quotes five prominent researchers in the field giving
this opinion [Ham21, pp1–2]. For example Stephen Simpson [Sim09] says

[i]t is striking that a great many foundational theories are linearly ordered
by <. Of course it is possible to construct pairs of artificial theories which
are incomparable under <. However, this is not the case for the ‘natural’
or non-artificial theories which are usually regarded as significant in the
foundations of mathematics. The problem of explaining this observed
regularity is a challenge for future foundational research.

(Simpson’s relation ‘<’ is defined similarly enough to our ⩽Con that the difference
will not be relevant.) In this part of the essay, I will attempt to assess the extent to
which this linearity phenomenon is genuine, and if it is, what we may conclude from
this. I will begin by explaining why we do not have linearity outright and thus must
restrict our attention to a particular class of theories. I will then discuss what we
might hope to gain from such a linearity phenomenon: to that end I will introduce
Gödel’s program and the universe view of set theory, as well as considering linearity’s
implications within mathematics. I’ll then move to a discussion of whether the
hierarchy is indeed linear in ‘natural’ theories.

4. The consistency strength hierarchy is not linear outright

When discussing linearity of the consistency strength hierarchy what we really mean
is linearity of the order ⩽Con: that for any theories T,U which extend ZFC, we have
at least one of T ⩽Con U and U ⩽Con T . The stronger claim is in fact sometimes
made that this order is a well-order (see [Ste12, p5]), so that every descending
chain of theories has a ⩽Con-minimal element; this slightly stronger condition will
not concern us in this paper. However note that a proposed counter-example is
given in Section 4 of [Ham21], using the ‘cautious enumeration’, ZFC◦, of ZFC. The
enumeration works by listing the theorems of ZFC until a proof of a contradiction is
found, at which point it halts. We then have:

Proposition 4.1. ZFC◦ <Con ZFC.

Proof. Clearly we have ZFC◦ ⊆ ZFC, and thus ZFC ⊢ ConZFC → ConZFC◦. On
the other hand, suppose that ZFC+ConZFC is consistent; then we can find a model
of ZFC + Con (ZFC) + ¬Con (ZFC+ConZFC) by Gödel’s second incompleteness
theorem. In this model, any model of ZFC must have ¬ConZFC (since M ⊨
¬Con (ZFC+ConZFC)), thus the model believes that there is a proof from ZFC
that ZFC is not consistent. So the model believes that the enumeration of ZFC◦

will halt after finitely many iterations. It is well-known that ZFC ⊢ ConΓ for any
finite Γ ⊆ ZFC, the idea being we can conjunct the elements of Γ to obtain a single
formula, and then Lévy reflect to find a model of this formula, which suffices for
consistency; for details see [Kun14, pp131–132]. These considerations give us that
the model believes ZFC ⊢ ConZFC◦. By construction this model also believes that
ZFC+ ¬ConZFC is consistent, and thus with this and the above, we may construct
a model inside our original of ZFC+ ¬Con (ZFC) + ConZFC◦. Thus we arrive at
the conclusion ZFC◦ <Con ZFC. ⊣
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Note that we may then iterate this construction to get ZFC◦◦ <Con ZFC◦ <Con ZFC,
where ZFC◦◦ is obtained by enumerating ZFC until either a proof of a contradiction,
or a proof that there is such a proof, is found. This continues to obtain an ill-founded
chain of theories. It would take us beyond the scope of this paper to examine whether
this example suffices to demonstrate natural ill-foundedness, though this certainly
seems an interesting area for future study.

For ⩽Con to be linear outright would mean that for any theories T,U extending ZFC,
we have at least one of T ⩽Con U and U ⩽Con T . That is, any two theories have
comparable consistency strengths. This is the most simple, and therefore arguably
would be the most desirable, kind of linearity for the hierarchy to have. Due to the
work of Gödel and those following, however, it is now well-known that this is not
the case, and we can easily produce examples of non-comparability.

The following result is sufficient to see that the consistency strength hierarchy is
not linear simpliciter. The proof is adapted from Theorem 2 of [Ham21]: it was
originally stated for PA, so I have extended it to ZFC, and expanded the explanation
significantly.

Theorem 4.2. There is a sentence R in the language of set theory such that
ZFC+R ̸⩽Con ZFC+ ¬R and ZFC+ ¬R ̸⩽Con ZFC+R.

Proof. As in Theorem 1.26 let R be the Rosser sentence for ZFC+ConZFC, so that
R asserts that for any proof of R from ZFC+ConZFC, there is a shorter proof of
¬R from ZFC + ConZFC. We know that if ZFC + ConZFC is consistent, then (i)
ZFC+ConZFC ⊬ R, and (ii) ZFC+ConZFC ⊬ ¬R.

For (i) this is because if R were provable in this theory, then by its definition, this
would show that we can prove ¬R also (and that this proof will be shorter), which
would show that ZFC+ConZFC is inconsistent (since it proves both a statement
and its negation). For (ii) we reason similarly: if ¬R were provable in this theory,
then there would be a proof of R (with no shorter proof of ¬R) also, so we similarly
contradict our assumption of consistency.

We will now use these facts to give a modelM of

ZFC+Con (ZFC+ ¬R) + ¬Con (ZFC+R),

and a model N of

ZFC+Con (ZFC+R) + ¬Con (ZFC+ ¬R).

This suffices for our conclusion, since this shows

ZFC ⊬ Con (ZFC+ ¬R)→ Con (ZFC+R)

ZFC ⊬ Con (ZFC+R) → Con (ZFC+ ¬R)

by the semantics of →.

(i) gives us that there is a model M of ZFC + Con (ZFC) + ¬R: if every model
of ZFC + ConZFC believed R, then by completeness we would have that ZFC +
ConZFC ⊢ R, which we know is not the case. Thus insideM, by the definition of
R, there is a proof of R such that there is no shorter proof of ¬R. Thus this model
believes that ZFC ⊢ ¬R, and thus Con (ZFC+ ¬R), since M believes that ZFC is
consistent. (It is a basic fact of logic that if T is consistent and T ⊢ φ, then T + φ
is consistent.)
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Further, we must have that M believes ¬Con (ZFC+R): from before, M believes
that ZFC ⊢ ¬R, and thus must also believe ZFC + R ⊢ ¬R. However clearly
ZFC+R ⊢ R, thus this theory must be inconsistent according toM.

Thus we have a model of Con (ZFC+ ¬R) + ¬Con (ZFC+R), as required.

Now turning to (ii). By Theorem 1.27, the theory ZFC+Con (ZFC) +R can’t prove
its own consistency, and thus there is a model N which believes that this theory
is inconsistent. Note that in general if a model believes that a theory T + φ is
inconsistent, then it thinks that any model of T must have ¬φ true (since there is
no model of an inconsistent theory). Then by completeness, as above, we get that
this model must believe that T ⊢ ¬φ. Applying this here with T = ZFC+ConZFC
and φ = R, we have that N must believe that ZFC+ConZFC ⊢ ¬R.

Since R is true in N , this means that the model believes that there is a proof of ¬R
such that there is no smaller proof of R (this is just the definition of R restated,
given that we have a proof of ¬R). Then N believes that ZFC ⊢ R, so as above
believes Con (ZFC+R). But since N believes ZFC is consistent, inside N we must
then have ZFC ⊬ ¬R by identical logic to the case for (i). Thus by the same logic as
above, we have a model of Con (ZFC+R) + ¬Con (ZFC+ ¬R).

We have given our two models, and so the proof is complete. ⊣

Thus we have seen that the consistency strength hierarchy does indeed contain some
non-linearity. In light of this I will now discuss what linearity in the class of ‘natural’
theories might give us, both philosophically and mathematically.

5. Why might we want consistency strength hierarchy linearity?

Before we examine the question of linearity in natural theories, some consideration
must be given to what such a result might hope to achieve. Central to this are
Gödel’s program and the universe view of set theory, which I will now briefly
introduce.

5.1. The universe view. The ‘universe view’ of set theory [Ham20b, p286] claims
that there is a unique set-theoretic reality, within which all set-theoretic questions
have determinate answers (though we may not know these answers – see Subsection
5.2). Since all the mathematics we know may be interpreted in set theory, this could
be argued to extend to the claim that within such a universe, all mathematical
questions have determinate answers. Gödel is well-known to have been an advocate
of the universe view (though he did not call it this): see Subsection 5.2 for more
details on this. The universist typically believes that there is a correct set of axioms
extending ZFC with which we should do set theory, and therefore that set-theoretic
principles which conflict with these axioms should not be accepted, even if we can
study their consequences. For example, if our correct set of axioms proves CH (see
Subsection 5.2), then the universist would argue that the forcing extensions of Cohen
in which ¬CH holds are simply misguided or else just a formalism, and have no
set-theoretic reality underlying them.

In opposition to the universe view, there is the ‘multiverse view’ [Ham12, p1], which
claims that there are many valid concepts of set, each of which gives rise to its
own set-theoretic universe. It claims that modern work on forcing and inner model
theory has given us large amounts of experience in these different universes, allowing
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us to choose which set-theoretic principles we want to hold: there are universes with
CH, universes without, universes with inaccessible cardinals, and so on.

Each of these positions raise a host of ontological questions concerning the nature
of the objects to which we are referring: are they of the same sort as objects in the
physical world? how do we have access to these objects? and so on. Interesting
though these questions are, this essay will be more concerned with how results about
the consistency strength hierarchy can be brought to bear on the issue of universism
more broadly, and thus will sidestep these concerns.

5.2. Gödel’s program. In [Ste12, p1], Steel describes Gödel’s program as the
task of ‘decid[ing] mathematically interesting questions independent of ZFC in well-
justified extensions of ZFC’. It is worth making a few clarifications about exactly
what I will take this to mean.

Gödel’s philosophy of maths was not always clear – his account of intuition in
[Göd83] has been described as ‘one of the most difficult and obscure passage[s] in
[his] finished philosophical writings’ [Par95, p67] – though it is clear that he held
some form of realism to be true. This is to say that he believed that there is a
‘well-determined’ [Göd83, p476] mathematical reality, which exists independently
of our experience of it. The crucial corollary of this is that Gödel believed that all
mathematical questions ought to have determinate answers – in his case he was
considering the continuum hypothesis, which he suspected would eventually be
answered in the negative [Göd83, p480].

The continuum hypothesis, CH, first investigated by Cantor, is the claim that the
cardinality of the set of real numbers is the first uncountable cardinal, ℵ1 (see
Definition 1.8). We can prove that the cardinality of the reals is 2ℵ0 , and thus the
continuum hypothesis equivalently asserts that 2ℵ0 = ℵ1. Since by definition ℵ1
is the cardinal successor of ℵ0, this leads to a natural generalisation of CH, the
generalised continuum hypothesis, GCH, which asserts that the cardinal successor
operation is always the power set operation, so we have ℵ+α := ℵα+1 = 2ℵα for all
α ∈ On. It is now well known that CH and GCH are independent of ZFC: in the
late 1930s Gödel showed in [Göd38] and [Göd39] using his constructible universe
L that if ZFC is consistent, then so is ZFC + (G)CH. Later, in 1963 Paul Cohen
published a result to the contrary, [Coh63], showing that if ZFC is consistent, then so
is ZFC+ ¬CH. These results taken together show us that the continuum hypothesis
must be independent of ZFC:

Corollary 5.1. If ZFC is consistent, then ZFC ⊬ CH,¬CH.

Proof. I will show ZFC ⊬ CH. The corresponding proof for ¬CH is essentially
identical, however uses Gödel’s result rather than Cohen’s.

Suppose for contradiction that ZFC ⊢ CH. Then we also have ZFC+¬CH ⊢ CH, since
a proof in ZFC also counts as a proof in ZFC+¬CH. We also have ZFC+¬CH ⊢ ¬CH,
thus ZFC + ¬CH is inconsistent, and thus by Cohen’s result so is ZFC, which
contradicts our assumption. ⊣

To this day, the status of CH is not settled in the mathematical community: see
[Ham15] for more on this. Gödel himself believed that it would would eventually
be proven false by addition of further axioms to ZFC. An interpretation of some of
Gödel’s philosophical beliefs, including around CH, is given in [Mad00, II.1, III.2].
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Before I move to explain Gödel’s program, a brief note must be made on ontology
and epistemology. We must be careful not to conflate the ontological claims of
realism with any claims about knowability – it is possible that one could believe
there is a unique set-theoretic reality in which all mathematical questions are settled,
without also believing that we can hope to know the answers to these questions
ourselves (even in principle). Questions whose answers we may never know (even if
they do have answers) have been termed ‘absolutely undecidable’, and are considered
for example in [Koe06], where Koellner concludes that we don’t at present have
good reason to believe that we know of any such questions. Gödel eventually moved
towards the view that not only did all mathematical questions have determinate
answers, but also we could expect to know such answers. He was open to the idea
that there could be a a ‘generalized completeness theorem’ [Koe06, p10], ‘which
would say that every proposition expressible in set theory is decidable from the
present axioms plus some true assertions about the largeness of the universe of all
sets’ [Göd90, p151].

With this clarified, we arrive at Steel’s characterisation of Gödel’s program above.
What we take from Gödel is his belief that all set-theoretic, and thus all mathematical
questions, have determinate, objective answers, and his hope that we could come to
know these answers. Thus stated, these views are a strengthening of the universe
perspective, adding to it a positive epistemological claim. For an example: though we
can construct models where CH is true and models where CH is false, one collection
of these models is misguided, and does not accurately represent mathematical reality,
and we might hope to find some principle which tells us which collection this is.

I will briefly pause on a potential objection to Gödel’s program, since if it held true,
then it seems the program would be misguided, and our questions about linearity
perhaps moot.

5.2.1. Epistemological issues. The objection pushes back on the idea underlying
Gödel’s program that, if we are able to climb the hierarchy in a unique way, this
supports the epistemological claim that this will answer all our mathematical
questions. This issue is considered in part in Koellner’s [Koe06], as mentioned
above: if climbing arbitrarily high in the ladder of consistency strength failed to
decide a particular question, then such a question would be a strong candidate
for an absolutely undecidable statement. It is outside the scope of the paper to
detail Koellner’s arguments here. However I will note that there is a quantity of
evidence suggesting that climbing the consistency strength hierarchy – typically by
assuming larger large-cardinal axioms – allows us to answer more questions. For
example, if there are infinitely many Woodin cardinals, then the axiom of projective
determinacy (which is about two-player infinite games) holds (see [MS89]).To the
contrary, the continuum hypothesis is not settled by any known large-cardinal axiom
(provided that we do not take V = L to be a large-cardinal axiom): this is a result
of Lévy and Solovay, generalising the one given in [LS67]. We have that (following
its statement in [Ham15, p136]):

Theorem 5.2. The set-theoretic universe V has forcing extensions (i) V [G] ⊨ ¬CH,
where V [G] collapses no cardinals (ii) V [H] ⊨ CH, where V [H] has no new reals.

It is beyond this paper to detail exactly what this theorem means. However the
key takeaway is that given any large-cardinal axiom we want (since these only ever
affect what is inside V ), we can always ‘force’ CH or ¬CH, to our liking. Thus,
large-cardinal axioms will never settle CH.
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On balance, however, I believe that were the consistency strength hierarchy to be
linear, this would support that Gödel was right in his suspicions about generalised
completeness. Whilst CH is yet unsettled by a sufficiently tall rung in the consistency
strength ladder, this stands out against a background of many problems which have
been decided in this way: we have a quantity of evidence suggesting that climbing
the hierarchy does provide answers to all our questions, and our only evidence
against is that as yet we are unsure about some propositions. Lévy-Solovay is a
powerful result and certainly provides some credibility to the view that CH might
not be settled by height in the hierarchy. However new set-theoretic principles rich
in consequences which do not take the form of large cardinals, such as determinacy
axioms, are being studied increasingly more. On this basis I would argue that
Gödel’s program is still a worthwhile endeavour.

5.3. Philosophical implications of linearity.

5.3.1. Linearity builds the road. Central to Gödel’s program is the idea that we can
ascribe a ‘strength’ to a particular extension of ZFC: for Gödel this manifested in
his belief that the use of increasingly strong ‘axioms of infinity’ (referred to today
as ‘large-cardinal axioms’) would answer an increasing number of mathematical
questions. For the modern advocate of Gödel’s program, such as John Steel, this
is seen in talk of the ‘one road upward’ [Ste13, Slide 5], and the idea that we can
‘climb’ the consistency strength hierarchy [Ste12, p5, p6, p7, p8]. (Strictly speaking,
Steel’s ‘one road upward’ remark was just in reference to a particular instance of
linearity at the level of sentences about real numbers, though it should be clear
that this view applies elsewhere.) In both cases, what is important is that there
is a unique way to extend a particular theory extending ZFC: if our extension is
not unique, so there are two or more of possible extensions, then our hierarchy may
branch off in many directions. In this case it is not clear how we are to assign
‘strength’ to any particular extension, or indeed choose between different branches
when we try and ‘climb’. Linearity gives us this uniqueness, since for each node in
our hierarchy, there can be only one directly above it.

It is noted by Steel [Ste13, Slide 6], we don’t need full linearity to arrive at the ‘one
road’, merely directedness, where we recall:

Definition 5.3. A partially ordered set (P,⩽) is directed if and only if for any
x, y ∈ P, there exists a z ∈ P with x, y ⩽ z. ◁

The reason for this is that directedness allows us to keep climbing in a unique way
by simply choosing an upper bound for any given two theories. It might be objected
that, absent linearity, the upper bound for two nodes in a directed poset need not be
unique. In particular then, it is not the case in general that if any two theories have
an upper bound, that we recover the ‘one road upwards’, since this upper bound
might sit amongst many, all of which may be incomparable. Consider Figure 2 for an
example of such a situation. This objection does not damage Steel’s point however,
since we can simply iterate, and find an upper bound for these incomparable upper
bounds, and so on. We are still able to climb in a unique way, since we can always
find a theory which bounds any two given theories. These remarks on directedness
will concern us in Subsection 7.1.
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· · ·· · ·

Figure 2. Two theories (the two nodes along the bottom) may
have many upper bounds (the nodes along the top).

In any case, linearity would give us a unique way of climbing the consistency strength
hierarchy, and thus would provide the advocate of Gödel’s program with the notion
of ‘strength’ or ‘height’ which they require for their project to make sense.

5.3.2. The universe view. Though the universe view underpins Gödel’s program,
we note that consistency strength linearity could also be used as an argument in
favour of this position, and against multiversism. In this way it is doubly useful to
an advocate of the program.

More specifically, if our theories do sit in a linear hierarchy of consistency strength,
then this seems to suggest that there is a determinate set-theoretic reality. The
‘determinate’ aspect of this characterisation ought to be emphasised more strongly
here than the ‘reality’ part – the existence of a linear hierarchy of consistency
strength presumably tells us nothing about ontology. Whatever the ontology of this
universe, and despite any epistemological issues we may have (à la Koellner), it
doesn’t seem like the freedom required for multiversism, which relies on maintaining
a plurality of possible theories, is possible if we have such a hierarchy.

5.4. Linearity and mathematics. On the more mathematical side, linearity
would surely be a desirable result, if we can attain it. Not only would it be a
beautiful phenomenon in its own right – one described by H. Friedman as one of
the ‘great mysteries’ [Fri98] of the foundations of mathematics – but it would also
provide an elegant classification framework for theories extending ZFC: we simply
aim to find a rung on the ladder with which the theory is equiconsistent. A similar
classification problem arises even if the hierarchy does not have such a structure,
however this is certainly a less pleasing phenomenon. (It should be noted that these
are purely mathematical considerations – a theory being pleasing is not here being
taken as evidence for its truth, as surely it would be ‘pleasing’ if powerful theories
could prove their own consistencies.)

Having considered why we may want linearity to hold for the consistency strength
hierarchy, I will now move to consider the phenomenon in more depth, before I
consider whether, given what I will conclude below, any of these goals succeed.

6. Evidence for linearity in ‘natural’ theories

As Hamkins notes [Ham21, p8], ‘nobody likes’ the example of non-linearity given
in Theorem 4.2, the reason being that the theories considered are not ‘natural’.
Whilst the concept of ‘naturality’ presumed by most mathematicians working in
this field has been called into question [Ham21, Section 9], for present purposes
note that prima facie there is a genuine concept being identified here (all five of
the mathematicians quoted by Hamkins mention naturality or something intended
as a synonym). Some possible glosses could be ‘not constructed specifically to
demonstrate non-linearity’, or else ‘occurring in the normal studies of a set theorist
interested in extensions of ZFC’. Making for now the (potentially quite large)
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assumption that we have a reliable way of distinguishing the ‘natural’ theories from
the ‘unnatural’, I will consider here evidence for consistency strength linearity in
the natural theories.

As noted above, linearity in natural theories seems widely accepted among set
theorists; in his [Ste12, p5] Steel conjectures that ‘if T and U are natural extensions
of ZFC, then either T ⩽Con U or U ⩽Con T .’ Indeed most appear to agree that no
counter-example has yet been found; in conjunction with the many instances of
linearity we have proved, this appears to be good inductive evidence for his claim.

A particular case study of this is seen in the cardinals we defined in Part I: as
proved by Theorem 3.6, the worldly and otherworldly cardinals, as well as all
their hyper-extensions, fit linearly below the inaccessible cardinals. In defence of
the ‘naturality’ of these concepts (despite our avoidance of defining exactly what
‘naturality’ means), we might note that the worldly cardinals arise as the smallest
cardinals which provide models of ZFC, surely of interest to set theorists, whilst the
otherworldly cardinals have been described as occurring ‘frequently’ in set-theoretic
studies by Joel David Hamkins (a set-theorist) on his blog [Ham20a]. Moreover
Hamkins claims he was introduced to the idea by a PhD student in set theory by
a tweet here [Che20], so these cardinals must belong to the class of those ‘studied
by set theorists’. As for the hyper-extensions, these were defined in line with
typical hyper-extensions of large-cardinal concepts. In particular, the hyperworldly
cardinals and their extensions essentially copied their definition from those of the
hyper-inaccessible cardinals from [Car15, ch2].

Definition 6.1. A cardinal κ is α-inaccessible if and only if it is inaccessible and
for every β < α, κ is a limit of β-otherworldly cardinals. ◁

Definition 6.2. A cardinal κ is α-hyperβ-inaccessible if and only if
(i) κ is inaccessible;
(ii) for all η < β, κ is κ-hyperη-inaccessible;
(iii) for all γ < α, κ is a limit of γ-hyperβ-inaccessible cardinals. ◁

Compare these with Definitions 2.2 and 2.6, respectively.

7. Questioning linearity in ‘natural’ theories

I will now turn to consider how we might call into question the orthodoxy surrounding
natural linearity in the consistency strength hierarchy. There are a number of ways
we might do this: we could offer examples of non-linearity which are natural, we
could argue that our current evidence base in fact does not support this conclusion, or
we could reject that the notion of ‘naturality’ has a sufficiently precise, non-circular
definition which is able to support the conclusion. In the final case, this is not
strictly speaking evidence against linearity in natural theories, but is instead to be
taken as a rejection of the question more broadly. We will not have sufficient space
in this essay to consider this last option, however it is certainly an area worth further
study. A survey of the concept of naturality (or ‘naturalness’) in mathematics is
given in [MV15]; in his [Bag04], Joan Bagaria suggests some criteria for axioms to
count as natural: maximality, fairness, consistency, and success. For more see the
works cited.

Note that Hamkins’ paper only considers theories which posit the existence of certain
large cardinals – these being by far the most common extensions of ZFC. It has
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been suggested that for any natural extension T of ZFC we can find a large-cardinal
hypothesis H with T ≡Con H, see for example [Ste12, p5], though we will not
pursue this claim any further. For our purposes, it suffices to note that if we seek
to demonstrate non-linearity, then an example from the realm of large cardinals
will suffice. On the other hand when seeking to evidence linearity, we must note
that the majority of theories extending ZFC currently studied by set theorists begin
with some large-cardinal assumption, and thus evidence for linearity among theories
defined via large cardinals constitutes good inductive evidence for linearity among
all theories.

7.1. Natural examples of non-linearity. Perhaps the easiest way to reject the
view that the consistency strength hierarchy is linear in natural theories would be
to provide natural theories which witness this. Joel David Hamkins suggests in
[Ham21, Sec2] that there is an abundance of such examples. Hamkins’ result is:

Theorem 7.1. There is a computable function f such that for n ≠ m, we have
that ZFC ⊬ Con (ZFC+ In)→ Con (ZFC+ Im), where Ik asserts that there are f(k)
inaccessible cardinals.

Stated using ⩽Con, this theorem gives us countably many instances of ⩽Con-
incomparability – whenever n ̸= m it is neither the case that ZFC+ In ⩽Con ZFC+ Im
nor that ZFC+ Im ⩽Con ZFC+ In.

The proof of this statement uses ideas from computability theory, in particular the
universal function (which is a computable function which can replicate the behaviour
of all other computable functions). The details are beyond the knowledge of the
author, however will not be relevant to the conclusions we draw from this result.

As Hamkins notes ([Ham21, p10]), this example not only gives an instance of non-
linearity at a specific level of the consistency strength hierarchy, but in fact at
many levels – the result clearly goes through if we replace ‘inaccessible’ with any
(consistent) large-cardinal concept we like.

There are a number of possible replies to Hamkins’ result. The first could be to
question in what sense, if any, these theories count as ‘natural’. Another reply, which
accepts the naturality of the construction, notes that whilst this does then count as
non-linearity in the hierarchy, this doesn’t mean the same philosophical conclusions
can’t be drawn as from full linearity. In particular, it seems to be the case that
above any collection of instances of non-linearity, we can find a stronger principle
which implies them all. For example if we define a cardinal to be 1-inaccessible if
and only if it is inaccessible and a limit of inaccessible cardinals, as in Definition
6.1, then ZFC+ ‘there is a 1-inaccessible cardinal’ has consistency strength greater
than any ZFC+ In for n ∈ ω. More formally:

Proposition 7.2. ZFC+ In <Con ZFC+ ‘there is a 1-inaccessible cardinal’ for any
n ∈ ω.

Proof. Since f(n) is (if defined) a natural number, it suffices to show that ZFC+
‘there is a 1-inaccessible cardinal’ ⊢ Con (ZFC+ ‘there are n inaccessible cardinals’)
for any n ∈ ω. Suppose that there is a 1-inaccessible cardinal κ, then κ is a limit
of inaccessible cardinals; since κ is also inaccessible and thus regular, we have that
there must be κ inaccessible cardinals less than κ. In particular since κ > ℵ0, there
are more than n inaccessible cardinals for any n ∈ ω. Since this will hold in any
model where there is a 1-inaccessible cardinal, we are done by completeness. ⊣
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This result gives us that even if Hamkins’ construction is natural, we could still hope
for directedness in the consistency strength hierarchy, where we recall Definition 5.3.
Indeed, we may have as strong evidence for directedness as in Section 6, which may
well be sufficient to draw the philosophical conclusions we want. Reformulating the
central claim of interest to say that for any T,U which are natural extensions of ZFC
there is a natural extension S such that T,U ⩽Con S, we still arrive at John Steel’s
‘one road upward’: since we are always able to ‘unify’ any two theories generated as
in Theorem 7.1 with a stronger one above, we still have a useful notion of ‘height’.
If we note that Hamkins’ construction only enables us to posit finite numbers of
particular types of cardinals, we can see we will still obtain directedness, absent
examples of non-linearity of a different type. Since we can always posit the theory
which asserts that there is a proper class of cardinals of a particular type, and this
theory will be strictly stronger than any theory positing only finitely many such
cardinals, we can still get directedness.

Thus even if we take Theorem 7.1 to be a genuine example of natural non-linearity,
we needn’t abandon any of the philosophical goals of Subsection 5.3: it seems we
are just as able to climb the hierarchy in a unique way as we thought before. The
only case in which we lose this uniqueness is if we wanted to stop at one of the
(ZFC+ Ik)-theories, though I am not aware of any arguments that this would ever
be the case, rather than continuing up the hierarchy to the next type of large
cardinal. Indeed there is a school of thought among set theorists which argues
that we should always seek principles which ‘maximise’, see for example [Mad88,
II.2]. The epistemological goal of Gödel’s program is also unaffected by this result.
In particular, if we believe that climbing the hierarchy will offer answers to more
and more questions, since we are still able to climb the hierarchy in a unique way,
we should keep this belief. I will now turn to consider arguments which call into
question whether our current evidence base supports natural linearity.

7.2. Does our current evidence support natural linearity? Two main argu-
ments are raised in [Ham21] which call into question whether our current evidence
for natural linearity is as strong as commonly assumed. The first says that since our
large-cardinal concepts are constructed in similar ways – frequently as critical points
of elementary embeddings of the universe V into a transitive class M – in many
cases it is entirely unsurprising that we get linearity. Furthermore, there is also
the suggestion that if we were to move beyond this construction of large cardinals,
we would then lose this linearity phenomenon. The second argues that we suffer
from confirmation bias in asserting linearity, since our methods for constructing
models (forcing and inner model theory) preserve arithmetic truth, and thus preserve
consistency statements. I will consider these arguments in turn, critically assessing
them and drawing some new conclusions.

7.2.1. Similarity of construction. The first argument notes that many of our large-
cardinal concepts were created in ways which were intended as strengthenings of
concepts we already had: this has been seen in this paper with the construction
of both the hyper-hierarchies, from whose definitions we were easily able to prove
linearity. As noted in Subsection 6, this type of ‘hyper’-construction occurs elsewhere
in the study of large cardinals: as noted above [Car15] greatly generalises the notion
of hyper-inaccessible to higher and higher levels. The same sort of construction arises
if we consider Mahlo cardinals, which are defined as follows. Recall the definitions
of club and stationary sets, 1.13, 1.14, respectively.
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Definition 7.3. A cardinal κ is Mahlo if and only if the set {α < κ | α is inaccessible}
is stationary in κ. ◁

We may then define, following [Car15, p28].

Definition 7.4. A cardinal κ is α-Mahlo if and only if it is Mahlo, and for all β < α,
the set of β-Mahlo cardinals less than κ is stationary in κ. κ is hyper-Mahlo if and
only if it is κ-Mahlo. ◁

Away in consistency strength from the smaller large cardinals, many large-cardinal
concepts are now defined via non-trivial elementary embeddings j : M → N , where
M,N are transitive classes (this allows M,N = V ). We have the following result.

Proposition 7.5. If j : M → N is a non-trivial elementary embedding and N ⊆M ,
then there is an ordinal κ with j(κ) ̸= κ; at this κ we in fact have j(κ) > κ.

Proof. By hypothesis there is some x ∈ M of minimal rank such that j(x) ̸= x.
If y ∈ x, then y has lower rank than x and thus j(y) = y by the minimality of x.
Further, by elementarity j(y) ∈ j(x), and thus y ∈ j(x). Therefore x ⊊ j(x), and in
particular then rankx ⩽ rank j(x).

Let z ∈ j(x) \ x, and suppose for contradiction that rank j(x) = rankx = κ. By
assumption z has lower rank than j(x), thus by our assumption lower rank than
x. Therefore we must have z = j(z), and so j(z) ∈ j(x), which by elementarity
implies that z ∈ x, which contradicts the definition of z. This gives us that
rankx < rank j(x).

Finally note that j is elementary, and so for any formula φ and x, y ∈M , we have
M ⊨ φ(x, y) if and only if N ⊨ φ(j(x), j(y)). By definition M ⊨ rankx = κ, hence
N ⊨ rank j(x) = j(κ) = j(rankx), so combining with the above, and the fact that
rank is absolute between transitive models ([Kan08, pp5–6]) we get that κ < j(κ),
as required. ⊣

The minimal such κ, which must exist by the well-ordering of On, is called the
critical point of j. We can define various large cardinals as the critical points of
elementary embeddings j : M → N , where we posit various conditions on j, M, and
N to vary the result.

Example 7.6.

(i) A cardinal κ is weakly compact if and only if for every transitive set M
with cardinality κ such that κ ∈ M , there is a transitive set N and an
elementary embedding j : M → N with critical point κ. (Note the existence
of this critical point does not follow from 7.5 since we don’t necessarily have
N ⊆ M ; see [Kan08, Proposition 5.1(b)] for a proof that we still have a
critical point in this case, as long as M ⊨ AC.)

(ii) A cardinal κ is γ-strong if and only if if is the critical point of a non-trivial
elementary embedding j : V →M , γ < j(γ), and Vκ+γ ⊆M . A cardinal is
strong if and only if it is γ-strong for arbitrarily large γ ∈ On.

(iii) A cardinal κ is superstrong if and only if it is the critical point of a non-trivial
elementary embedding j : V →M and Vj(κ) ⊆M .

(iv) A cardinal is θ-supercompact if and only if it is the critical point of a non-
trivial elementary embedding j : V →M and Mθ ⊆M , where Mθ denotes
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the set of all functions θ →M . A cardinal is supercompact if and only if it
is θ-supercompact for all θ ∈ On.

(v) A cardinal is Reinhardt if and only if it is the critical point of a non-trivial
elementary embedding j : V → V . It was shown by Kunen in [Kun71] that
the existence of such a cardinal is inconsistent with ZFC; the corresponding
result for ZF is still an open problem. For more see [BKW19].

Before we detail Hamkins’ arguments more fully, it is worth clarifying that he is not
suggesting that we can explain away all the linearity phenomena we have observed
by claiming that all the large-cardinal concepts we are interested in are all simple
variants on a central theme. With this said, it will be worth briefly dwelling on this
line of argument.

First we may note this is patently not the case: there exist large cardinals, such as the
worldly cardinals, for which no characterisation in terms of elementary embeddings
is currently known. With this said, as the area has matured, an increasing number
of large cardinals have been given elementary embedding characterisations. Quite
recently at the ‘small’ end of the hierarchy, Victoria Gitman [Git20, Slide 6] has
given a necessary condition for inaccessibility in terms of elementary embeddings.
However even if all known large-cardinal concepts could be characterised in this way,
I would argue that this would still not explain away the phenomenon of natural
linearity. For one, for many cardinals their elementary embedding characterisation
came after they were initially defined. A good example of this is the measurable
cardinals, which have the following equivalent definitions (among others: see [Va]).
A brief history follows below.

We recall the definition of a measure.

Definition 7.7. Given an infinite set S, a non-trivial, σ-additive measure on S is a
function m : P(S)→ [0,∞] such that:

(i) m(∅) = 0, m(S) > 0;
(ii) if X ⊆ Y ⊆ S, then m(X) ⩽ m(Y );
(iii) if Xi ⊆ S, i ∈ ω are such that Xi ∩Xj ̸= ∅ for i < j, then

m

(⋃
n∈ω

Xn

)
=

∞∑
n=0

m(Xn).

If imm ⊆ {0, 1}, then m is called 2-valued. Note cases where the summands are
infinite are defined as in [Tao11, pp xi–xii]. ◁

We then have:

Definition 7.8. A cardinal κ is measurable if and only if there is a 2-valued,
σ-additive measure definable on κ. ◁

We also equivalently have the following definition:

Definition 7.9. A cardinal κ is measurable if and only if there is a transitive M
and a non-trivial elementary embedding j : V →M with critical point κ. ◁
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It is worth noting that because Definition 7.9 imposes no other conditions on j other
than its domain being V, in order to characterise large cardinals smaller than the
measurables with respect to direct implication, we will need to take a domain strictly
smaller than V : this partly explains the definition of weakly compact cardinals
given in Example 7.6(i), as these have smaller implication and consistency strength
than the measurable cardinals.

The first of these definitions was investigated by Stanisław Ulam among others in the
1920s and 1930s, whilst the characterisation in terms of elementary embeddings had
to wait until the work of Scott in the 1950s. For more of the historical background
see [Kan08, pp22–27, p40]. The relevant point here is that whilst it is true that
measurable cardinals admit an elegant characterisation in terms of elementary
embeddings (indeed arguably the simplest such characterisation), this was a result
in itself, and far from obvious.

Further to this, we can note that there are many different ways we vary our
elementary embeddings to arrive at our various large cardinals, as in Example 7.6.
I would argue it is far from obvious that these should then lead to linearity in
consistency strength. More subtly than just the observation that the two closure
conditions are not immediately related to each other, I would note that consistency
strength does not always line up with the more intuitive notions of implication
strength, and ‘least instance’ strength as mentioned in Subsection 3.3. As noted
there, it can be the case that the other two hierarchies – whose configuration we
might guess more easily from different elementary-embeddings definitions – can
differ from consistency strength. In particular, it may be easy to see by comparing
different definitions using elementary embeddings whether the smallest instance of
one cardinal will be bigger than the smallest instance of another, though, given this
result about strong and superstrong cardinals, it does not follow that we can assume
much about their consistency strengths from this.

It should be conceded here that we do have the partial result that if we have direct
implication, then by Theorem 3.10 we also have consistency strength implication. For
an example of this, it was noted above that any non-trivial elementary embedding
with domain V will have a critical point which is measurable; thus for any large
cardinal defined in this way, we will also have that it has consistency strength of at
least a measurable cardinal.

Hamkins is instead making the point that our stock of genuinely surprising instances
of linearity are ‘simply many fewer than one might have expected’ [Ham21, p26].
Moreover, he adds that there are numerous instances where we have thus far failed
to prove linearity, for example not much is known about how the strongly compact
cardinals fit into the hierarchy (see [Ham21, p26]). Given the above remarks, though
the unexpectedness of such instances is subjective, Hamkins clearly has a point: in
any case where it is clear that we have direct implication between two large cardinals,
as is often the case with those given elementary embedding characterisations, we
know that we will also then have the corresponding result about consistency strength.

It is not clear to me however that these concerns present too much of an issue for
the defender of natural linearity. The fact still remains that the hierarchy is, for all
we know, linear in its natural theories. Even if many of these instances of linearity
have simple explanations, this does nothing to counter the phenomenon as a whole.
Moreover, as in the end of Section 6, given that we have a large stock of cases where
we do have linearity, the fact that there are cases where we are unsure needn’t
necessarily damage our hope that we will prove linearity for these too. What we
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would need instead is a reason to believe that these cases won’t turn out to be linear,
which as of now I don’t believe we do. With this said, Hamkins makes a further
case which damages this point.

7.2.2. Confirmation bias. Hamkins raises a subtler argument against our current
stock of evidence for linearity on page 27 of his paper: he claims that since our two
main methods of constructing models for our theories preserve arithmetic truth,
and consistency statements are arithmetic truths, it is entirely unsurprising that
we will never see consistency strength non-linearity with these methods. I will now
consider this in more detail, expanding on the presentation in [Ham21].

Our two main techniques in investigating models of extensions of ZF(C) are the
method of forcing and the construction of transitive inner models. The former of
these takes a transitive model M of ZFC and adjoins to it a new set G, which is
constructed using a partial order P. This method gives us very precise control over
what is true in the resulting model, which is termed M [G]. For an introduction
to forcing, see [Ung14]. On the other hand, to construct inner models we consider
transitive subclasses of the von Neumann universe V satisfying ZFC, or some
fragment thereof. Perhaps the canonical example of this is Gödel’s constructible
universe L, with which he demonstrated the consistency of both the axiom of choice
and the generalised continuum hypothesis with ZF. There will not be sufficient
space to discuss this here, however see [Sua21] for an exposition. Inner model theory
is applied to the study of the consistency strength hierarchy as follows: if it can be
shown that any model of a theory U has an inner model satisfying another theory
T , then it follows that the consistency of U implies the consistency of T (since the
existence of models implies consistency), and thus T ⩽Con U .

Importantly, when doing forcing and inner model theory we are always considering
transitive models, and thus we have that both of these methods preserve the truths
of arithmetic (the proof of this is beyond the author; as above see [Kun14, Lemma
II.4.14]), which will, in particular, include the codings of (the proofs of) any provable
consistency statements. More precisely, if we start with a transitive model M of a
theory T , and then construct using it a transitive model N of a theory U which
extends T , it is immediate that U believes all the consistency statements that T does,
and thus T ⩽Con U . Put another way, using these methods we could never construct
a model of U which doesn’t believe ConT – thus we could never demonstrate the
incomparability of U and T , which requires models of ConT + ¬ConU and of
¬ConT +ConU .

Hamkins’ conclusion is then that a large proportion of our evidence for natural
linearity suffers from confirmation bias. In particular, since our methods can only
demonstrate linearity, the lack of evidence of non-linearity should not be taken as a
particularly strong signal that it doesn’t occur. For an analogy, suppose that we
were searching the night sky for a body emitting radiation at a certain wavelength; if
the instrument we were using to search for the object was unable to detect radiation
of that particular wavelength, we would not be any more justified in concluding that
the body we were searching for was less likely to be there than if we had no evidence
at all. In Subsection 7.2.1, I argued that despite various cases where we are not
sure whether linearity holds, our stock of examples where it does gives us reason to
believe these unknown cases will be settled in the positive. Hamkins’ response is
that of the theories we know about, we have only been able to properly investigate
and classify those which are linearly related, and thus I am unjustified in making
this inductive claim.
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This conclusion doesn’t deny that there are instances of linearity, or that these
instances are genuinely surprising. It simply suggests that based on our current
available evidence we are not justified in believing that linearity in natural theories
holds across the board.

Given these considerations, the question then arises of how we might gather genuine
evidence for linearity in the consistency strength hierarchy. The first, and perhaps
easiest, would be to significantly reduce the stock of open cases: even if we only
use methods which incorporate transitive models (and thus can only demonstrate
linearity), if these methods are widely applicable across our class of theories, then
I would argue this still gives us inductive evidence for linearity. To see this we
note that in the limit case, where all known theories have been demonstrated to be
linear, confirmation bias would not concern us, since there are no potential counter-
instances which we may have missed. Thus in the (admittedly very contrived) ‘limit
case but one’, where all but one theory have been shown to fit linearly, and thus
where our methods have proved to be applicable in almost all circumstances, this
would seem to give us inductive evidence that our methods ought to be applicable
here too – and thus that we should expect consistency strength linearity. The reason
that these arguments do not apply to our current state is that there are a great
number of open cases remaining, indeed enough that it would be an overstatement
to class our methods of forcing and inner models as ‘widely applicable’ in a way
which gives us inductive support for their applicability to cases about which we are
yet unsure.

The other approach would be to develop methods which do not, by default, preserve
arithmetic truths, such as (indeed necessarily) the study of non-transitive models.
If using these methods we continued to observe exclusively linearity in our theories,
then this would constitute confirmation-bias-free evidence. This certainly seems
an area worthy of further investigation. On the other hand, were it argued that
transitivity of models was somehow inherent to our study of the concept of set, then
we would appear to arrive at linearity, albeit now simply by the way we are selecting
our models.

7.3. Where does this leave us? We have seen three arguments against the natural
linearity phenomenon. The first argument attempts to give an example of natural
non-linearity, and thus refute linearity wholesale. The second two arguments take a
more philosophical approach by suggesting that our evidence base does not support
the claim of natural linearity as strongly as we think.

It is difficult to appropriately assess the success of the first argument without a
clear concept of ‘naturality’ in mind. It is beyond doubt that Hamkins has given
an example of non-linearity, yet it remains to be argued that such an example is
natural in a way that the spurned Gödelian cases are not. Although no attempt will
be made here to define ‘naturality’, it could be argued that Hamkins’ construction
fails the two vague criteria given in Section 6 (not being designed specifically to
reach non-linearity and occurring in the normal work of a set theorist). For the first,
without presuming too much about the history of the work, I would argue that it
strongly seems that the theories were developed with the intention of arriving at
non-linearity, given that this is the only place such theories arise. The second is less
clear: Hamkins is by trade a set theorist, and is certainly interested in extensions of
ZFC. On the other hand he is also a philosopher. The theory he uses to demonstrate
non-linearity seems to me to have come up with this latter purpose in mind, rather
than as part of a broader mathematical endeavour. Put another way, were a set
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theorist unconcerned with more philosophical questions surrounding linearity of the
consistency strength hierarchy, it seems unlikely they would have studied such a
theory. With this said, the question of linearity is as much a mathematical one as
a philosophical one, and in any case, especially as far as set theory is concerned,
philosophy and maths have a fuzzy boundary between them.

In any case, it is far from clear that these two criteria are necessary or sufficient
for naturality; whether this is the case could only hope to be answered by a serious
philosophical investigation of the concept. My conclusion on this first argument
against natural linearity is that since it preserves directedness, it still allows for the
philosophical goals as outlined in Section 5 (which is not to suggest Hamkins argued
otherwise). We are still able to climb the hierarchy and have a coherent notion
of the strength of a theory, and thus pursue Gödel’s program. Likewise, since we
can always bound our theories above, the arguments for the universe view also go
through in the same way.

The second two arguments are less definitive in nature. I would argue, however,
they should be more troubling to those who believe that we do have consistency
strength linearity, who can respond to the above by simply rejecting naturality. The
confirmation bias argument shows that the evidence we currently have for linearity
supports this significantly less strongly than the prevailing consensus (as at the
beginning of Part II) suggests. Further, the argument from similarity of construction
gives us that this evidence base is smaller than previously believed. In the face of
these two objections, and absent any further study which bypasses them, it seems
to me that, despite the consensus among set theorists, we don’t currently have good
reason to believe that the hierarchy is linear in its natural theories.



part iii: conclusion

This thesis began with a mathematical investigation into the properties of two
recently developed large-cardinal concepts, the worldly and otherworldly cardinals, as
well as their extensions via various ‘hyper’ operators. In particular, we demonstrated
that in terms of consistency strength, the worldly cardinals, whilst small (and indeed
perhaps as small as large cardinals can be), exceed the entire hierarchy of consistency
statements of the form ZFC,ZFC+ConZFC, . . . In turn, the otherworldly cardinals
exceed the worldly cardinals and their entire ‘hyper’ hierarchy. Finally, both these
concepts and their extensions are exceeded by the inaccessible cardinals, which are
still considered ‘small’ as large cardinals.

Further, we gave a brief survey of other hierarchies which have been developed to
compare large cardinals. I would highlight these hierarchies and others like them
(perhaps which apply to all theories extending ZFC, rather than just large-cardinal
theories), and in particular the relationships between them, as an interesting area for
further study. No space has been given in this essay to justifying why it is linearity
in consistency strength which concerns us, rather than linearity (say) in implication
strength; answering such a question and others surrounding it could be the task of
a future research.

We then moved to discuss the question of linearity of the consistency strength
hierarchy, which we noted could only occur for a subclass of the class of all theories,
since using Gödelian ideas we can readily construct formal instances of non-linearity.
We noted that, philosophically, linearity points us towards the universe view and
gives us a means of pursuing Gödel’s program by allowing us to meaningfully talk
of ‘climbing’ the hierarchy. We further noted that linearity would be an elegant
mathematical result. The argument for linearity was then given, which is empirical
and notes that our current evidence base contains only instances of linearity for
natural theories (or instances about which we are unsure). Our original results in
Part I of this thesis, which demonstrated that the worldly and otherworldly cardinals
as well as their hyper-extensions fit into the hierarchy linearly, contributes to this
evidence base.

I then considered arguments which call natural linearity into question. First, I
examined Hamkins’ purported example of non-linearity and concluded that whilst
it does constitute a genuine instance of non-linearity in the hierarchy, it is not
clear whether it counts as ‘natural’. Further, I noted that even if it is natural,
it does not prevent the philosopher from pursuing the goals as mentioned in the
previous paragraph, since it does not prevent directedness. The next two arguments
showed us that our evidence base for linearity is smaller than expected; but also,
more seriously, that they may not be able to demonstrate linearity at all, since the
evidence base suffers from confirmation bias throughout. We took these arguments
as severely damaging to the current orthodoxy, which maintains that we do have
natural linearity, or at least that our available evidence supports that it is the case.
We noted that, in order to properly demonstrate linearity, we would have to begin
by using methods that employ non-transitive models of set theory.

As mentioned, no detailed consideration of the concept of naturality has been
undertaken in this essay, though this is a challenge given at the end of Hamkins’
paper on the topic. Further research into this area is clearly needed before we can
properly answer the question of natural linearity. With this said, as things stand, I
argue that based on what we have discussed in this thesis, we ought to reject the
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consensus that we are justified in believing that the hierarchy is linear in its natural
theories.
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